循环前缀系统的盲最大比组合与信道缩短

C. Panazio, A. S. Menezes, J. Romano
{"title":"循环前缀系统的盲最大比组合与信道缩短","authors":"C. Panazio, A. S. Menezes, J. Romano","doi":"10.1109/SPAWC.2008.4641617","DOIUrl":null,"url":null,"abstract":"In this paper we propose a blind maximum ratio combining (MRC) technique along with an initialization method to improve the performance of the blind adaptive channel shortening algorithm called multicarrier equalization by restoration of redundancy (MERRY) in the 1times2 SIMO channel context. We show through analysis and simulations that the blind MRC technique allow us to take advantage of the spatial diversity improving considerably the performance of the MERRY algorithm in the SIMO context.","PeriodicalId":197154,"journal":{"name":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind maximum ratio combining and channel shortening for cyclic prefixed systems\",\"authors\":\"C. Panazio, A. S. Menezes, J. Romano\",\"doi\":\"10.1109/SPAWC.2008.4641617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a blind maximum ratio combining (MRC) technique along with an initialization method to improve the performance of the blind adaptive channel shortening algorithm called multicarrier equalization by restoration of redundancy (MERRY) in the 1times2 SIMO channel context. We show through analysis and simulations that the blind MRC technique allow us to take advantage of the spatial diversity improving considerably the performance of the MERRY algorithm in the SIMO context.\",\"PeriodicalId\":197154,\"journal\":{\"name\":\"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2008.4641617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2008.4641617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种盲最大比值组合(MRC)技术和一种初始化方法来提高盲自适应信道缩短算法的性能,该算法被称为多载波恢复冗余均衡(MERRY),在1倍2 SIMO信道环境下。我们通过分析和模拟表明,盲MRC技术使我们能够利用空间多样性,大大提高了SIMO环境下MERRY算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind maximum ratio combining and channel shortening for cyclic prefixed systems
In this paper we propose a blind maximum ratio combining (MRC) technique along with an initialization method to improve the performance of the blind adaptive channel shortening algorithm called multicarrier equalization by restoration of redundancy (MERRY) in the 1times2 SIMO channel context. We show through analysis and simulations that the blind MRC technique allow us to take advantage of the spatial diversity improving considerably the performance of the MERRY algorithm in the SIMO context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信