使用随机森林回归和XGBoost回归模型预测进入纽约市的运行列车延误

T. Wiese
{"title":"使用随机森林回归和XGBoost回归模型预测进入纽约市的运行列车延误","authors":"T. Wiese","doi":"10.22161/ijebm.7.1.5","DOIUrl":null,"url":null,"abstract":"The Long Island Railroad operates one of the largest commuter rail networks in the U.S.[1]. This study uses data which includes the location and arrival time of trains based on onboard GPS position and other internal sources. This paper analyzes the GPS position of the train to gain insight into potential gaps in on time performance and train operations. This was done by developing a Random Forest Re-gression model [2] and an XGBoost regression model [3[. Both models prove to be useful to make such predictions and should be used to help railroads to prepare and adjust their operations.","PeriodicalId":388836,"journal":{"name":"International Journal of Engineering, Business and Management","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Operating Train Delays into New York City using Random Forest Regression and XGBoost Regres-sion Models\",\"authors\":\"T. Wiese\",\"doi\":\"10.22161/ijebm.7.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Long Island Railroad operates one of the largest commuter rail networks in the U.S.[1]. This study uses data which includes the location and arrival time of trains based on onboard GPS position and other internal sources. This paper analyzes the GPS position of the train to gain insight into potential gaps in on time performance and train operations. This was done by developing a Random Forest Re-gression model [2] and an XGBoost regression model [3[. Both models prove to be useful to make such predictions and should be used to help railroads to prepare and adjust their operations.\",\"PeriodicalId\":388836,\"journal\":{\"name\":\"International Journal of Engineering, Business and Management\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering, Business and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22161/ijebm.7.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering, Business and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22161/ijebm.7.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

长岛铁路公司运营着美国最大的通勤铁路网络之一。本研究使用的数据包括基于车载GPS位置和其他内部来源的列车位置和到达时间。本文分析了列车的GPS位置,以深入了解准点率和列车运行中的潜在差距。这是通过开发随机森林回归模型[2]和XGBoost回归模型[3]来完成的。事实证明,这两种模型都有助于做出此类预测,并应用于帮助铁路公司做好准备和调整其运营。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Operating Train Delays into New York City using Random Forest Regression and XGBoost Regres-sion Models
The Long Island Railroad operates one of the largest commuter rail networks in the U.S.[1]. This study uses data which includes the location and arrival time of trains based on onboard GPS position and other internal sources. This paper analyzes the GPS position of the train to gain insight into potential gaps in on time performance and train operations. This was done by developing a Random Forest Re-gression model [2] and an XGBoost regression model [3[. Both models prove to be useful to make such predictions and should be used to help railroads to prepare and adjust their operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信