高光谱成像应用的检测算法:信号处理视角

D. Manolakis
{"title":"高光谱成像应用的检测算法:信号处理视角","authors":"D. Manolakis","doi":"10.1109/WARSD.2003.1295218","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to present a unified, simplified, and concise, overview of spectral target detection algorithms for hyperspectral imaging applications. We focus on detection algorithms derived using established statistical techniques and whose performance is predictable under reasonable assumptions about hyperspectral imaging data. The emphasis on a signal processing perspective helps to, better understand the strengths and limitations of each algorithm, avoid unrealistic performance expectations, and apply an algorithm properly and sensibly.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":"{\"title\":\"Detection algorithms for hyperspectral imaging applications: a signal processing perspective\",\"authors\":\"D. Manolakis\",\"doi\":\"10.1109/WARSD.2003.1295218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to present a unified, simplified, and concise, overview of spectral target detection algorithms for hyperspectral imaging applications. We focus on detection algorithms derived using established statistical techniques and whose performance is predictable under reasonable assumptions about hyperspectral imaging data. The emphasis on a signal processing perspective helps to, better understand the strengths and limitations of each algorithm, avoid unrealistic performance expectations, and apply an algorithm properly and sensibly.\",\"PeriodicalId\":395735,\"journal\":{\"name\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WARSD.2003.1295218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

摘要

本文的目的是提供一个统一的、简化的、简明的、用于高光谱成像应用的光谱目标检测算法概述。我们专注于使用已建立的统计技术衍生的检测算法,其性能在合理的高光谱成像数据假设下是可预测的。强调信号处理的角度有助于更好地理解每种算法的优点和局限性,避免不切实际的性能期望,并正确和明智地应用算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection algorithms for hyperspectral imaging applications: a signal processing perspective
The purpose of this paper is to present a unified, simplified, and concise, overview of spectral target detection algorithms for hyperspectral imaging applications. We focus on detection algorithms derived using established statistical techniques and whose performance is predictable under reasonable assumptions about hyperspectral imaging data. The emphasis on a signal processing perspective helps to, better understand the strengths and limitations of each algorithm, avoid unrealistic performance expectations, and apply an algorithm properly and sensibly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信