1号

Ankit Soni, R. Chouhan, A. Ganar, C. Gode, K. Barnard, P. Duygulu, N. D. Freitas, D. Forsyth, D. Blei, G. Iyengar, H. Nock, Meng Wang, Hao Li, D. Tao, Ke Lu, Xindong Wu, Andreas Ess, T. Tuytelaars, L. Gool
{"title":"1号","authors":"Ankit Soni, R. Chouhan, A. Ganar, C. Gode, K. Barnard, P. Duygulu, N. D. Freitas, D. Forsyth, D. Blei, G. Iyengar, H. Nock, Meng Wang, Hao Li, D. Tao, Ke Lu, Xindong Wu, Andreas Ess, T. Tuytelaars, L. Gool","doi":"10.30546/azjcvs.2021.2.1","DOIUrl":null,"url":null,"abstract":"In view of the problem of slow speed and low accuracy of the vehicle recognition in advanced driver assistance systems, a vehicle recognition method based on pseudo invariant linear moment features and ELM is proposed. Target edge is extracted by the improved PCNN model, according to the characteristic of multiple target features, the pseudo invariant linear moment features are extracted, then ELM model is used to train and recognize the databases. The validity of the model is verified through experiments, compared with other algorithms, the recognition accuracy of pseudo invariant linear moment features and ELM vehicle recognition method is higher and the speed is faster, which provides a new way to identify the vehicle in real-time monitoring system of the vehicle.","PeriodicalId":159197,"journal":{"name":"Ophthalmology Cases & Hypotheses","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Number 1\",\"authors\":\"Ankit Soni, R. Chouhan, A. Ganar, C. Gode, K. Barnard, P. Duygulu, N. D. Freitas, D. Forsyth, D. Blei, G. Iyengar, H. Nock, Meng Wang, Hao Li, D. Tao, Ke Lu, Xindong Wu, Andreas Ess, T. Tuytelaars, L. Gool\",\"doi\":\"10.30546/azjcvs.2021.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the problem of slow speed and low accuracy of the vehicle recognition in advanced driver assistance systems, a vehicle recognition method based on pseudo invariant linear moment features and ELM is proposed. Target edge is extracted by the improved PCNN model, according to the characteristic of multiple target features, the pseudo invariant linear moment features are extracted, then ELM model is used to train and recognize the databases. The validity of the model is verified through experiments, compared with other algorithms, the recognition accuracy of pseudo invariant linear moment features and ELM vehicle recognition method is higher and the speed is faster, which provides a new way to identify the vehicle in real-time monitoring system of the vehicle.\",\"PeriodicalId\":159197,\"journal\":{\"name\":\"Ophthalmology Cases & Hypotheses\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmology Cases & Hypotheses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30546/azjcvs.2021.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology Cases & Hypotheses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30546/azjcvs.2021.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对高级驾驶辅助系统中车辆识别速度慢、准确率低的问题,提出了一种基于伪不变线性矩特征和ELM的车辆识别方法。利用改进的PCNN模型提取目标边缘,根据多目标特征的特点提取伪不变线性矩特征,然后利用ELM模型对数据库进行训练和识别。通过实验验证了模型的有效性,与其他算法相比,伪不变线性矩特征和ELM车辆识别方法的识别精度更高,速度更快,为车辆实时监控系统中的车辆识别提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Number 1
In view of the problem of slow speed and low accuracy of the vehicle recognition in advanced driver assistance systems, a vehicle recognition method based on pseudo invariant linear moment features and ELM is proposed. Target edge is extracted by the improved PCNN model, according to the characteristic of multiple target features, the pseudo invariant linear moment features are extracted, then ELM model is used to train and recognize the databases. The validity of the model is verified through experiments, compared with other algorithms, the recognition accuracy of pseudo invariant linear moment features and ELM vehicle recognition method is higher and the speed is faster, which provides a new way to identify the vehicle in real-time monitoring system of the vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信