二值和任意有限随机变量的互信息的紧下界作为变分距离的函数

Arno G. Stefani, Johannes B. Huber, Christophe Jardin, H. Sticht
{"title":"二值和任意有限随机变量的互信息的紧下界作为变分距离的函数","authors":"Arno G. Stefani, Johannes B. Huber, Christophe Jardin, H. Sticht","doi":"10.1109/AusCTW.2014.6766418","DOIUrl":null,"url":null,"abstract":"In this paper a numerical method is presented, which finds a tight lower bound for the mutual information between a binary and an arbitrary finite random variable with joint distributions that have variational distance to a known joint distribution not greater than a known value. This lower bound can be applied to mutual information estimation with confidence intervals.","PeriodicalId":378421,"journal":{"name":"2014 Australian Communications Theory Workshop (AusCTW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A tight lower bound on the mutual information of a binary and an arbitrary finite random variable as a function of the variational distance\",\"authors\":\"Arno G. Stefani, Johannes B. Huber, Christophe Jardin, H. Sticht\",\"doi\":\"10.1109/AusCTW.2014.6766418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a numerical method is presented, which finds a tight lower bound for the mutual information between a binary and an arbitrary finite random variable with joint distributions that have variational distance to a known joint distribution not greater than a known value. This lower bound can be applied to mutual information estimation with confidence intervals.\",\"PeriodicalId\":378421,\"journal\":{\"name\":\"2014 Australian Communications Theory Workshop (AusCTW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Australian Communications Theory Workshop (AusCTW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AusCTW.2014.6766418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Australian Communications Theory Workshop (AusCTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AusCTW.2014.6766418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了一种求二元和任意有限随机变量间互信息的紧下界的数值方法,其联合分布与已知联合分布的变分距离不大于一个已知值。该下界可应用于具有置信区间的互信息估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tight lower bound on the mutual information of a binary and an arbitrary finite random variable as a function of the variational distance
In this paper a numerical method is presented, which finds a tight lower bound for the mutual information between a binary and an arbitrary finite random variable with joint distributions that have variational distance to a known joint distribution not greater than a known value. This lower bound can be applied to mutual information estimation with confidence intervals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信