关于重复组合拍卖的学习

Seiichi Arai, T. Miura
{"title":"关于重复组合拍卖的学习","authors":"Seiichi Arai, T. Miura","doi":"10.1109/PACRIM.2011.6032900","DOIUrl":null,"url":null,"abstract":"In this work, we discuss how an intelligent agent learns in combinatorial auctions. It is well-known that finding the optimal allocation to maximize revenue is NP-complete, because this is a typical form of Set Package Problem (SPP). We introduce a framework of reinforcement learning to combinatorial auctions, and discuss how to obtain intelligence about bidding behavior. We show empirical convergence of knowledge within Q-learning framework. By this result, we target fully automated negotiation systems.","PeriodicalId":236844,"journal":{"name":"Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On learning repeated combinatorial auctions\",\"authors\":\"Seiichi Arai, T. Miura\",\"doi\":\"10.1109/PACRIM.2011.6032900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we discuss how an intelligent agent learns in combinatorial auctions. It is well-known that finding the optimal allocation to maximize revenue is NP-complete, because this is a typical form of Set Package Problem (SPP). We introduce a framework of reinforcement learning to combinatorial auctions, and discuss how to obtain intelligence about bidding behavior. We show empirical convergence of knowledge within Q-learning framework. By this result, we target fully automated negotiation systems.\",\"PeriodicalId\":236844,\"journal\":{\"name\":\"Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.2011.6032900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2011.6032900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们讨论了智能代理如何在组合拍卖中学习。众所周知,寻找收益最大化的最优分配是np完全的,因为这是集包问题(SPP)的典型形式。我们将强化学习框架引入到组合拍卖中,并讨论了如何获得关于竞价行为的智能。我们在q学习框架中展示了知识的经验收敛性。根据这一结果,我们的目标是全自动谈判系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On learning repeated combinatorial auctions
In this work, we discuss how an intelligent agent learns in combinatorial auctions. It is well-known that finding the optimal allocation to maximize revenue is NP-complete, because this is a typical form of Set Package Problem (SPP). We introduce a framework of reinforcement learning to combinatorial auctions, and discuss how to obtain intelligence about bidding behavior. We show empirical convergence of knowledge within Q-learning framework. By this result, we target fully automated negotiation systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信