{"title":"通过优化能源储存能力减少二氧化碳排放","authors":"Michal Chudy, J. Mwaura","doi":"10.1109/POWERAFRICA.2016.7556620","DOIUrl":null,"url":null,"abstract":"With spreading of renewable energy in energy mix of national grids, the issue of high capacity and efficient energy storage is becoming very critical. A comprehensive model of South African power grid developed at the University of Pretoria is presented in this work. The model contains all notable power generators in the country. Mixed integer non-linear optimisation techniques are employed for unit commitments calculations. The Optimal size of storage will be calculated these optimisation methods. This work is unique as the optimisation was performed with CO2 emissions as the only objective variable. The main output of this work is estimation of the optimal size of energy storage required for renewable capacities planned in South Africa for 2030.","PeriodicalId":177444,"journal":{"name":"2016 IEEE PES PowerAfrica","volume":"773 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mitigation of CO2 emissions by optimizing energy storage capacity\",\"authors\":\"Michal Chudy, J. Mwaura\",\"doi\":\"10.1109/POWERAFRICA.2016.7556620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With spreading of renewable energy in energy mix of national grids, the issue of high capacity and efficient energy storage is becoming very critical. A comprehensive model of South African power grid developed at the University of Pretoria is presented in this work. The model contains all notable power generators in the country. Mixed integer non-linear optimisation techniques are employed for unit commitments calculations. The Optimal size of storage will be calculated these optimisation methods. This work is unique as the optimisation was performed with CO2 emissions as the only objective variable. The main output of this work is estimation of the optimal size of energy storage required for renewable capacities planned in South Africa for 2030.\",\"PeriodicalId\":177444,\"journal\":{\"name\":\"2016 IEEE PES PowerAfrica\",\"volume\":\"773 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES PowerAfrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERAFRICA.2016.7556620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERAFRICA.2016.7556620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mitigation of CO2 emissions by optimizing energy storage capacity
With spreading of renewable energy in energy mix of national grids, the issue of high capacity and efficient energy storage is becoming very critical. A comprehensive model of South African power grid developed at the University of Pretoria is presented in this work. The model contains all notable power generators in the country. Mixed integer non-linear optimisation techniques are employed for unit commitments calculations. The Optimal size of storage will be calculated these optimisation methods. This work is unique as the optimisation was performed with CO2 emissions as the only objective variable. The main output of this work is estimation of the optimal size of energy storage required for renewable capacities planned in South Africa for 2030.