基于六层卷积神经网络的水果分类

Siyuan Lu, Zhihai Lu, Soriya Aok, Logan Graham
{"title":"基于六层卷积神经网络的水果分类","authors":"Siyuan Lu, Zhihai Lu, Soriya Aok, Logan Graham","doi":"10.1109/ICDSP.2018.8631562","DOIUrl":null,"url":null,"abstract":"Automatic fruit classification is a difficult problem because there are so many types of fruits and the large inter-class similarity. In this study, we proposed to use convolutional neural network (CNN) for fruit classification. We designed a six-layer CNN consisting of convolution layers, pooling layers and fully connected layers. The experiment results suggested that our method achieved promising performance with accuracy of 91.44%, better than three state-of-the-art approaches: voting-based support vector machine, wavelet entropy, and genetic algorithm.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Fruit Classification Based on Six Layer Convolutional Neural Network\",\"authors\":\"Siyuan Lu, Zhihai Lu, Soriya Aok, Logan Graham\",\"doi\":\"10.1109/ICDSP.2018.8631562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic fruit classification is a difficult problem because there are so many types of fruits and the large inter-class similarity. In this study, we proposed to use convolutional neural network (CNN) for fruit classification. We designed a six-layer CNN consisting of convolution layers, pooling layers and fully connected layers. The experiment results suggested that our method achieved promising performance with accuracy of 91.44%, better than three state-of-the-art approaches: voting-based support vector machine, wavelet entropy, and genetic algorithm.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

水果的种类繁多,类间相似性大,因此自动分类是一个难题。在本研究中,我们提出使用卷积神经网络(CNN)进行水果分类。我们设计了一个由卷积层、池化层和全连接层组成的六层CNN。实验结果表明,该方法的准确率为91.44%,优于基于投票的支持向量机、小波熵和遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fruit Classification Based on Six Layer Convolutional Neural Network
Automatic fruit classification is a difficult problem because there are so many types of fruits and the large inter-class similarity. In this study, we proposed to use convolutional neural network (CNN) for fruit classification. We designed a six-layer CNN consisting of convolution layers, pooling layers and fully connected layers. The experiment results suggested that our method achieved promising performance with accuracy of 91.44%, better than three state-of-the-art approaches: voting-based support vector machine, wavelet entropy, and genetic algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信