脓肿牙与阻生牙分类的机器学习算法比较研究

Ni’matul ’Abdah Adhiya Fakhriy, I. Ardiyanto, H. A. Nugroho, Gilang Nugraha Putu Pratama
{"title":"脓肿牙与阻生牙分类的机器学习算法比较研究","authors":"Ni’matul ’Abdah Adhiya Fakhriy, I. Ardiyanto, H. A. Nugroho, Gilang Nugraha Putu Pratama","doi":"10.1109/IBIOMED.2018.8534887","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study of machine learning algorithms for classifying normal, abscessed, and impacted tooth based on periapical radiograph images. Those methods are Logistic Regression (LR), Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Random Forest (RF), Gaussian Naive Bayes (NB), and Support Vector Machine (SVM). Haralick texture, Hu’s moment invariants, and color histogram are utilized to obtain the feature vector of those images. The accuracy can be calculated with 10-fold cross-validation. We also verify the accuracy of the machine learning algorithms under the various number of training images. We take 30, 45, and 60 images from three classes. Regardless the number of training images, RF keeps outperforming the others in the term of accuracy.","PeriodicalId":217196,"journal":{"name":"2018 2nd International Conference on Biomedical Engineering (IBIOMED)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning Algorithms for Classifying Abscessed and Impacted Tooth: Comparison Study\",\"authors\":\"Ni’matul ’Abdah Adhiya Fakhriy, I. Ardiyanto, H. A. Nugroho, Gilang Nugraha Putu Pratama\",\"doi\":\"10.1109/IBIOMED.2018.8534887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparative study of machine learning algorithms for classifying normal, abscessed, and impacted tooth based on periapical radiograph images. Those methods are Logistic Regression (LR), Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Random Forest (RF), Gaussian Naive Bayes (NB), and Support Vector Machine (SVM). Haralick texture, Hu’s moment invariants, and color histogram are utilized to obtain the feature vector of those images. The accuracy can be calculated with 10-fold cross-validation. We also verify the accuracy of the machine learning algorithms under the various number of training images. We take 30, 45, and 60 images from three classes. Regardless the number of training images, RF keeps outperforming the others in the term of accuracy.\",\"PeriodicalId\":217196,\"journal\":{\"name\":\"2018 2nd International Conference on Biomedical Engineering (IBIOMED)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 2nd International Conference on Biomedical Engineering (IBIOMED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBIOMED.2018.8534887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd International Conference on Biomedical Engineering (IBIOMED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBIOMED.2018.8534887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种基于根尖周x线片图像的机器学习算法,用于分类正常、脓肿和阻生牙齿。这些方法是逻辑回归(LR)、线性判别分析(LDA)、k近邻(KNN)、随机森林(RF)、高斯朴素贝叶斯(NB)和支持向量机(SVM)。利用Haralick纹理、Hu矩不变量和颜色直方图获得图像的特征向量。准确度可通过10倍交叉验证计算。我们还在不同数量的训练图像下验证了机器学习算法的准确性。我们从三个班级中取30、45和60张图片。无论训练图像的数量如何,RF在准确性方面都优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Algorithms for Classifying Abscessed and Impacted Tooth: Comparison Study
This paper presents a comparative study of machine learning algorithms for classifying normal, abscessed, and impacted tooth based on periapical radiograph images. Those methods are Logistic Regression (LR), Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Random Forest (RF), Gaussian Naive Bayes (NB), and Support Vector Machine (SVM). Haralick texture, Hu’s moment invariants, and color histogram are utilized to obtain the feature vector of those images. The accuracy can be calculated with 10-fold cross-validation. We also verify the accuracy of the machine learning algorithms under the various number of training images. We take 30, 45, and 60 images from three classes. Regardless the number of training images, RF keeps outperforming the others in the term of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信