基于纹理特征和遗传优化的岩石分类方法研究

M. B. Valentín, C. Bom, M. Albuquerque, M. Albuquerque, E. Faria, M. Correia, R. Surmas
{"title":"基于纹理特征和遗传优化的岩石分类方法研究","authors":"M. B. Valentín, C. Bom, M. Albuquerque, M. Albuquerque, E. Faria, M. Correia, R. Surmas","doi":"10.7437/NT2236-7640/2017.01.003","DOIUrl":null,"url":null,"abstract":"In this work we present a method to classify a set of rock textures based on a Spectral Analysis and the extraction of the texture Features of the resulted images. Up to 520 features were tested using 4 different filters and all 31 different combinations were verified. The classification process relies on a Naive Bayes classifier. We performed two kinds of optimizations: statistical optimization with covariance-based Principal Component Analysis (PCA) and a genetic optimization, for 10,000 randomly defined samples, achieving a final maximum classification success of 91% against the original 70% success ratio (without any optimization nor filters used). After the optimization 9 types of features emerged as most relevant.","PeriodicalId":185904,"journal":{"name":"arXiv: Computer Vision and Pattern Recognition","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On a method for Rock Classification using Textural Features and Genetic Optimization\",\"authors\":\"M. B. Valentín, C. Bom, M. Albuquerque, M. Albuquerque, E. Faria, M. Correia, R. Surmas\",\"doi\":\"10.7437/NT2236-7640/2017.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a method to classify a set of rock textures based on a Spectral Analysis and the extraction of the texture Features of the resulted images. Up to 520 features were tested using 4 different filters and all 31 different combinations were verified. The classification process relies on a Naive Bayes classifier. We performed two kinds of optimizations: statistical optimization with covariance-based Principal Component Analysis (PCA) and a genetic optimization, for 10,000 randomly defined samples, achieving a final maximum classification success of 91% against the original 70% success ratio (without any optimization nor filters used). After the optimization 9 types of features emerged as most relevant.\",\"PeriodicalId\":185904,\"journal\":{\"name\":\"arXiv: Computer Vision and Pattern Recognition\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7437/NT2236-7640/2017.01.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7437/NT2236-7640/2017.01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们提出了一种基于光谱分析和提取结果图像的纹理特征的方法来分类一组岩石纹理。使用4种不同的过滤器测试了多达520个特征,并验证了所有31种不同的组合。分类过程依赖于朴素贝叶斯分类器。我们对10,000个随机定义的样本进行了两种优化:基于协方差的主成分分析(PCA)的统计优化和遗传优化,最终最大分类成功率为91%,而原始成功率为70%(不使用任何优化或过滤器)。优化后,出现了9种最相关的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a method for Rock Classification using Textural Features and Genetic Optimization
In this work we present a method to classify a set of rock textures based on a Spectral Analysis and the extraction of the texture Features of the resulted images. Up to 520 features were tested using 4 different filters and all 31 different combinations were verified. The classification process relies on a Naive Bayes classifier. We performed two kinds of optimizations: statistical optimization with covariance-based Principal Component Analysis (PCA) and a genetic optimization, for 10,000 randomly defined samples, achieving a final maximum classification success of 91% against the original 70% success ratio (without any optimization nor filters used). After the optimization 9 types of features emerged as most relevant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信