分布式内存自适应网格细化的可扩展算法

Akhil Langer, J. Lifflander, P. Miller, K. Pan, L. Kalé, P. Ricker
{"title":"分布式内存自适应网格细化的可扩展算法","authors":"Akhil Langer, J. Lifflander, P. Miller, K. Pan, L. Kalé, P. Ricker","doi":"10.1109/SBAC-PAD.2012.48","DOIUrl":null,"url":null,"abstract":"This paper presents scalable algorithms and data structures for adaptive mesh refinement computations. We describe a novel mesh restructuring algorithm for adaptive mesh refinement computations that uses a constant number of collectives regardless of the refinement depth. To further increase scalability, we describe a localized hierarchical coordinate-based block indexing scheme in contrast to traditional linear numbering schemes, which incur unnecessary synchronization. In contrast to the existing approaches which take O(P) time and storage per process, our approach takes only constant time and has very small memory footprint. With these optimizations as well as an efficient mapping scheme, our algorithm is scalable and suitable for large, highly-refined meshes. We present strong-scaling experiments up to 2k ranks on Cray XK6, and 32k ranks on IBM Blue Gene/Q.","PeriodicalId":232444,"journal":{"name":"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Scalable Algorithms for Distributed-Memory Adaptive Mesh Refinement\",\"authors\":\"Akhil Langer, J. Lifflander, P. Miller, K. Pan, L. Kalé, P. Ricker\",\"doi\":\"10.1109/SBAC-PAD.2012.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents scalable algorithms and data structures for adaptive mesh refinement computations. We describe a novel mesh restructuring algorithm for adaptive mesh refinement computations that uses a constant number of collectives regardless of the refinement depth. To further increase scalability, we describe a localized hierarchical coordinate-based block indexing scheme in contrast to traditional linear numbering schemes, which incur unnecessary synchronization. In contrast to the existing approaches which take O(P) time and storage per process, our approach takes only constant time and has very small memory footprint. With these optimizations as well as an efficient mapping scheme, our algorithm is scalable and suitable for large, highly-refined meshes. We present strong-scaling experiments up to 2k ranks on Cray XK6, and 32k ranks on IBM Blue Gene/Q.\",\"PeriodicalId\":232444,\"journal\":{\"name\":\"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD.2012.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2012.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出了用于自适应网格细化计算的可扩展算法和数据结构。我们描述了一种新的网格重构算法,用于自适应网格细化计算,该算法使用恒定数量的集合,而不考虑细化深度。为了进一步提高可扩展性,我们描述了一种基于局部层次坐标的块索引方案,而不是传统的线性编号方案,这会导致不必要的同步。与每个进程占用O(P)时间和存储的现有方法相比,我们的方法只占用常数时间,并且内存占用非常小。通过这些优化以及有效的映射方案,我们的算法具有可扩展性,适合于大型,高度精细的网格。我们提出了在Cray XK6上达到2k排名的强缩放实验,在IBM Blue Gene/Q上达到32k排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Algorithms for Distributed-Memory Adaptive Mesh Refinement
This paper presents scalable algorithms and data structures for adaptive mesh refinement computations. We describe a novel mesh restructuring algorithm for adaptive mesh refinement computations that uses a constant number of collectives regardless of the refinement depth. To further increase scalability, we describe a localized hierarchical coordinate-based block indexing scheme in contrast to traditional linear numbering schemes, which incur unnecessary synchronization. In contrast to the existing approaches which take O(P) time and storage per process, our approach takes only constant time and has very small memory footprint. With these optimizations as well as an efficient mapping scheme, our algorithm is scalable and suitable for large, highly-refined meshes. We present strong-scaling experiments up to 2k ranks on Cray XK6, and 32k ranks on IBM Blue Gene/Q.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信