{"title":"利用加权认知地图实现WSN的端到端目标","authors":"Amr H. El Mougy, M. Ibnkahla","doi":"10.1109/LCN.2012.6423641","DOIUrl":null,"url":null,"abstract":"In this paper, a novel cognitive engine for Wireless Sensor Networks (WSN) is proposed in order to achieve its end-to-end goals. This engine is designed using the tool known as Weighted Cognitive Maps (WCM). WCMs have the advantage of being able to consider multiple conflicting objectives and constraints with low complexity. Their inference properties also allow them to resolve complex network interactions using simple mathematical operations. Methods for designing the WCM system are illustrated. The performance of the proposed system is evaluated using computer simulations. Simulation results show that the WCM system outperforms its existing counterparts in metrics of network lifetime, throughput, and PLR.","PeriodicalId":209071,"journal":{"name":"37th Annual IEEE Conference on Local Computer Networks","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Achieving end-to-end goals of WSN using Weighted Cognitive Maps\",\"authors\":\"Amr H. El Mougy, M. Ibnkahla\",\"doi\":\"10.1109/LCN.2012.6423641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel cognitive engine for Wireless Sensor Networks (WSN) is proposed in order to achieve its end-to-end goals. This engine is designed using the tool known as Weighted Cognitive Maps (WCM). WCMs have the advantage of being able to consider multiple conflicting objectives and constraints with low complexity. Their inference properties also allow them to resolve complex network interactions using simple mathematical operations. Methods for designing the WCM system are illustrated. The performance of the proposed system is evaluated using computer simulations. Simulation results show that the WCM system outperforms its existing counterparts in metrics of network lifetime, throughput, and PLR.\",\"PeriodicalId\":209071,\"journal\":{\"name\":\"37th Annual IEEE Conference on Local Computer Networks\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"37th Annual IEEE Conference on Local Computer Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2012.6423641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"37th Annual IEEE Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2012.6423641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achieving end-to-end goals of WSN using Weighted Cognitive Maps
In this paper, a novel cognitive engine for Wireless Sensor Networks (WSN) is proposed in order to achieve its end-to-end goals. This engine is designed using the tool known as Weighted Cognitive Maps (WCM). WCMs have the advantage of being able to consider multiple conflicting objectives and constraints with low complexity. Their inference properties also allow them to resolve complex network interactions using simple mathematical operations. Methods for designing the WCM system are illustrated. The performance of the proposed system is evaluated using computer simulations. Simulation results show that the WCM system outperforms its existing counterparts in metrics of network lifetime, throughput, and PLR.