具有预测上下文的强盗学习:后悔分析和选择性上下文查询

Jianyi Yang, Shaolei Ren
{"title":"具有预测上下文的强盗学习:后悔分析和选择性上下文查询","authors":"Jianyi Yang, Shaolei Ren","doi":"10.1109/INFOCOM42981.2021.9488896","DOIUrl":null,"url":null,"abstract":"Contextual bandit learning selects actions (i.e., arms) based on context information to maximize rewards while balancing exploitation and exploration. In many applications (e.g., cloud resource management with dynamic workloads), before arm selection, the agent/learner can either predict context information online based on context history or selectively query the context from an outside expert. Motivated by this practical consideration, we study a novel contextual bandit setting where context information is either predicted online or queried from an expert. First, considering predicted context only, we quantify the impact of context prediction on the cumulative regret (compared to an oracle with perfect context information) by deriving an upper bound on regret, which takes the form of a weighted combination of regret incurred by standard bandit learning and the context prediction error. Then, inspired by the regret’s structural decomposition, we propose context query algorithms to selectively obtain outside expert’s input (subject to a total query budget) for more accurate context, decreasing the overall regret. Finally, we apply our algorithms to virtual machine scheduling on cloud platforms. The simulation results validate our regret analysis and shows the effectiveness of our selective context query algorithms.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Bandit Learning with Predicted Context: Regret Analysis and Selective Context Query\",\"authors\":\"Jianyi Yang, Shaolei Ren\",\"doi\":\"10.1109/INFOCOM42981.2021.9488896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contextual bandit learning selects actions (i.e., arms) based on context information to maximize rewards while balancing exploitation and exploration. In many applications (e.g., cloud resource management with dynamic workloads), before arm selection, the agent/learner can either predict context information online based on context history or selectively query the context from an outside expert. Motivated by this practical consideration, we study a novel contextual bandit setting where context information is either predicted online or queried from an expert. First, considering predicted context only, we quantify the impact of context prediction on the cumulative regret (compared to an oracle with perfect context information) by deriving an upper bound on regret, which takes the form of a weighted combination of regret incurred by standard bandit learning and the context prediction error. Then, inspired by the regret’s structural decomposition, we propose context query algorithms to selectively obtain outside expert’s input (subject to a total query budget) for more accurate context, decreasing the overall regret. Finally, we apply our algorithms to virtual machine scheduling on cloud platforms. The simulation results validate our regret analysis and shows the effectiveness of our selective context query algorithms.\",\"PeriodicalId\":293079,\"journal\":{\"name\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM42981.2021.9488896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM42981.2021.9488896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

情境强盗学习基于情境信息选择行动(如武器),在平衡开发和探索的同时最大化奖励。在许多应用中(例如,具有动态工作负载的云资源管理),在臂选择之前,代理/学习者可以基于上下文历史在线预测上下文信息,或者有选择地从外部专家那里查询上下文。出于这种实际考虑,我们研究了一种新的上下文强盗设置,其中上下文信息要么在线预测,要么从专家那里查询。首先,仅考虑预测的上下文,我们通过推导后悔上界来量化上下文预测对累积后悔的影响(与具有完美上下文信息的预言相比),该上界采用标准强盗学习和上下文预测误差引起的后悔的加权组合形式。然后,受遗憾的结构分解的启发,我们提出了上下文查询算法,以有选择地获得外部专家的输入(受总查询预算的约束),以获得更准确的上下文,从而降低总体遗憾。最后,我们将算法应用于云平台上的虚拟机调度。仿真结果验证了后悔分析的有效性,并证明了选择上下文查询算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bandit Learning with Predicted Context: Regret Analysis and Selective Context Query
Contextual bandit learning selects actions (i.e., arms) based on context information to maximize rewards while balancing exploitation and exploration. In many applications (e.g., cloud resource management with dynamic workloads), before arm selection, the agent/learner can either predict context information online based on context history or selectively query the context from an outside expert. Motivated by this practical consideration, we study a novel contextual bandit setting where context information is either predicted online or queried from an expert. First, considering predicted context only, we quantify the impact of context prediction on the cumulative regret (compared to an oracle with perfect context information) by deriving an upper bound on regret, which takes the form of a weighted combination of regret incurred by standard bandit learning and the context prediction error. Then, inspired by the regret’s structural decomposition, we propose context query algorithms to selectively obtain outside expert’s input (subject to a total query budget) for more accurate context, decreasing the overall regret. Finally, we apply our algorithms to virtual machine scheduling on cloud platforms. The simulation results validate our regret analysis and shows the effectiveness of our selective context query algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信