复汉明空间的多项式系统

V. Levenshtein
{"title":"复汉明空间的多项式系统","authors":"V. Levenshtein","doi":"10.1109/ISIT.2004.1365395","DOIUrl":null,"url":null,"abstract":"It is known that polynomials f(t), such that the matrix f(rho(x,y)) with the Hamming distance rho(x,y) between vectors x=(x <sub>1</sub>,...,x<sub>n</sub>) and y=(y<sub>1</sub>,...,y<sub>n</sub>) is nonnegative definite, are described with the help of the system of Krawtchouk polynomials. In the paper the question on the existence of a similar system of polynomials is considered when the function rho(x,y) is not the Hamming distance","PeriodicalId":269907,"journal":{"name":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A system of polynomials for the complex hamming spaces\",\"authors\":\"V. Levenshtein\",\"doi\":\"10.1109/ISIT.2004.1365395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that polynomials f(t), such that the matrix f(rho(x,y)) with the Hamming distance rho(x,y) between vectors x=(x <sub>1</sub>,...,x<sub>n</sub>) and y=(y<sub>1</sub>,...,y<sub>n</sub>) is nonnegative definite, are described with the help of the system of Krawtchouk polynomials. In the paper the question on the existence of a similar system of polynomials is considered when the function rho(x,y) is not the Hamming distance\",\"PeriodicalId\":269907,\"journal\":{\"name\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2004.1365395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

已知多项式f(t),使得矩阵f(rho(x,y))与向量x=(x1,…,xn)和y=(y1,…,yn)之间的汉明距离rho(x,y)是非负定的,利用克劳tchouk多项式系统来描述。本文研究了函数rho(x,y)不为汉明距离时类似多项式系统的存在性问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A system of polynomials for the complex hamming spaces
It is known that polynomials f(t), such that the matrix f(rho(x,y)) with the Hamming distance rho(x,y) between vectors x=(x 1,...,xn) and y=(y1,...,yn) is nonnegative definite, are described with the help of the system of Krawtchouk polynomials. In the paper the question on the existence of a similar system of polynomials is considered when the function rho(x,y) is not the Hamming distance
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信