用于自然语言处理的动态神经系统的自动抽象

H. Jacobsson, S. Frank, D. Federici
{"title":"用于自然语言处理的动态神经系统的自动抽象","authors":"H. Jacobsson, S. Frank, D. Federici","doi":"10.1109/IJCNN.2007.4371171","DOIUrl":null,"url":null,"abstract":"This paper presents a variant of the crystallizing substochastic sequential machine extractor (CrySSMEx), an algorithm capable of extracting finite state descriptions of dynamic systems, such as recurrent neural networks, without any regard to their topology or weights. The algorithm is applied to a network trained on a language prediction task. The extracted state machines provide a detailed view of the operations of the RNN by abstracting and discretizing its functional behaviour. Here we extend previous work and extract state machines in Moore, rather than in Mealy, format. This subtle difference opens up the rule extractor to more domains, including sensorimotor modelling of autonomous robotic systems. Experiments are also conducted on far more input symbols, providing a greater insight into the behaviour of the algorithm.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automated Abstraction of Dynamic Neural Systems for Natural Language Processing\",\"authors\":\"H. Jacobsson, S. Frank, D. Federici\",\"doi\":\"10.1109/IJCNN.2007.4371171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a variant of the crystallizing substochastic sequential machine extractor (CrySSMEx), an algorithm capable of extracting finite state descriptions of dynamic systems, such as recurrent neural networks, without any regard to their topology or weights. The algorithm is applied to a network trained on a language prediction task. The extracted state machines provide a detailed view of the operations of the RNN by abstracting and discretizing its functional behaviour. Here we extend previous work and extract state machines in Moore, rather than in Mealy, format. This subtle difference opens up the rule extractor to more domains, including sensorimotor modelling of autonomous robotic systems. Experiments are also conducted on far more input symbols, providing a greater insight into the behaviour of the algorithm.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4371171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了结晶亚随机顺序机器提取器(CrySSMEx)的一种变体,该算法能够提取动态系统的有限状态描述,如循环神经网络,而不考虑其拓扑或权重。将该算法应用于语言预测任务训练的网络。提取的状态机通过抽象和离散RNN的功能行为,提供了RNN操作的详细视图。这里我们扩展了以前的工作,并以Moore格式提取状态机,而不是以Mealy格式。这种微妙的差异将规则提取器打开到更多的领域,包括自主机器人系统的感觉运动建模。实验也在更多的输入符号上进行,为算法的行为提供了更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Abstraction of Dynamic Neural Systems for Natural Language Processing
This paper presents a variant of the crystallizing substochastic sequential machine extractor (CrySSMEx), an algorithm capable of extracting finite state descriptions of dynamic systems, such as recurrent neural networks, without any regard to their topology or weights. The algorithm is applied to a network trained on a language prediction task. The extracted state machines provide a detailed view of the operations of the RNN by abstracting and discretizing its functional behaviour. Here we extend previous work and extract state machines in Moore, rather than in Mealy, format. This subtle difference opens up the rule extractor to more domains, including sensorimotor modelling of autonomous robotic systems. Experiments are also conducted on far more input symbols, providing a greater insight into the behaviour of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信