基于模糊c均值聚类方法的脑MRI图像鲁棒分割

Min Li, Zhikang Xiang, Limei Zhang, Z. Lian, Liang Xiao
{"title":"基于模糊c均值聚类方法的脑MRI图像鲁棒分割","authors":"Min Li, Zhikang Xiang, Limei Zhang, Z. Lian, Liang Xiao","doi":"10.1109/FSKD.2017.8392927","DOIUrl":null,"url":null,"abstract":"Segmentation of brain magnetic resonance imaging (MRI) images is greatly significant in neuroscience field. We propose a novel FCM method for segmentation of brain MRI images that makes full use of both the image intensity and spatial feature information. The proposed method can handle images having intensity inhomogeneity and noises by using the regularization that does not only consider the bias field but also takes neighborhood influence into account. Experiment indicates that the novel FCM method achieves more accurate and robust results in segmentation of brain MRI images compared to the expectation-maximization (EM) method and the conventional FCM method.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust segmentation of brain MRI images using a novel fuzzy c-means clustering method\",\"authors\":\"Min Li, Zhikang Xiang, Limei Zhang, Z. Lian, Liang Xiao\",\"doi\":\"10.1109/FSKD.2017.8392927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation of brain magnetic resonance imaging (MRI) images is greatly significant in neuroscience field. We propose a novel FCM method for segmentation of brain MRI images that makes full use of both the image intensity and spatial feature information. The proposed method can handle images having intensity inhomogeneity and noises by using the regularization that does not only consider the bias field but also takes neighborhood influence into account. Experiment indicates that the novel FCM method achieves more accurate and robust results in segmentation of brain MRI images compared to the expectation-maximization (EM) method and the conventional FCM method.\",\"PeriodicalId\":236093,\"journal\":{\"name\":\"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2017.8392927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8392927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑磁共振成像(MRI)图像的分割在神经科学领域具有重要意义。提出了一种充分利用图像强度和空间特征信息的脑MRI图像分割新方法。该方法采用了既考虑偏置场又考虑邻域影响的正则化方法,可以处理具有强度非均匀性和噪声的图像。实验表明,与期望最大化(EM)方法和传统的FCM方法相比,该方法在脑MRI图像分割方面具有更高的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust segmentation of brain MRI images using a novel fuzzy c-means clustering method
Segmentation of brain magnetic resonance imaging (MRI) images is greatly significant in neuroscience field. We propose a novel FCM method for segmentation of brain MRI images that makes full use of both the image intensity and spatial feature information. The proposed method can handle images having intensity inhomogeneity and noises by using the regularization that does not only consider the bias field but also takes neighborhood influence into account. Experiment indicates that the novel FCM method achieves more accurate and robust results in segmentation of brain MRI images compared to the expectation-maximization (EM) method and the conventional FCM method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信