基于局部均匀性和形态学图像处理的织物缺陷检测

A. Rebhi, S. Abid, F. Fnaiech
{"title":"基于局部均匀性和形态学图像处理的织物缺陷检测","authors":"A. Rebhi, S. Abid, F. Fnaiech","doi":"10.1109/IPAS.2016.7880062","DOIUrl":null,"url":null,"abstract":"In this paper, a new fabric detect detection algorithm based on local homogeneity and mathematical morphology is presented. In a first step, the local homogeneity of each pixel is computed to construct a new homogeneity image denoted as (H-image). Then a classical histogram is computed for the H-image to choose an optimal thresholding value to produce a corresponding binary image, which will be used to extract the optimal size and the shape of the Structuring Element (SE) for mathematical morphology. In a second step, the image is subjected to a series of morphological operations with this SE to detect the possible existing fabric defect. Simulation results exhibit accurate defect detection with low false alarms.","PeriodicalId":283737,"journal":{"name":"2016 International Image Processing, Applications and Systems (IPAS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Fabric defect detection using local homogeneity and morphological image processing\",\"authors\":\"A. Rebhi, S. Abid, F. Fnaiech\",\"doi\":\"10.1109/IPAS.2016.7880062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new fabric detect detection algorithm based on local homogeneity and mathematical morphology is presented. In a first step, the local homogeneity of each pixel is computed to construct a new homogeneity image denoted as (H-image). Then a classical histogram is computed for the H-image to choose an optimal thresholding value to produce a corresponding binary image, which will be used to extract the optimal size and the shape of the Structuring Element (SE) for mathematical morphology. In a second step, the image is subjected to a series of morphological operations with this SE to detect the possible existing fabric defect. Simulation results exhibit accurate defect detection with low false alarms.\",\"PeriodicalId\":283737,\"journal\":{\"name\":\"2016 International Image Processing, Applications and Systems (IPAS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Image Processing, Applications and Systems (IPAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPAS.2016.7880062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Image Processing, Applications and Systems (IPAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPAS.2016.7880062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

提出了一种基于局部均匀性和数学形态学的织物检测算法。第一步,计算每个像素的局部均匀性,构造一个新的均匀性图像,记为(H-image)。然后计算h图像的经典直方图,选择一个最优阈值生成相应的二值图像,该二值图像将用于提取数学形态学的最优结构元素(SE)的大小和形状。第二步,使用该SE对图像进行一系列形态学操作,以检测可能存在的织物缺陷。仿真结果显示缺陷检测准确,误报率低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabric defect detection using local homogeneity and morphological image processing
In this paper, a new fabric detect detection algorithm based on local homogeneity and mathematical morphology is presented. In a first step, the local homogeneity of each pixel is computed to construct a new homogeneity image denoted as (H-image). Then a classical histogram is computed for the H-image to choose an optimal thresholding value to produce a corresponding binary image, which will be used to extract the optimal size and the shape of the Structuring Element (SE) for mathematical morphology. In a second step, the image is subjected to a series of morphological operations with this SE to detect the possible existing fabric defect. Simulation results exhibit accurate defect detection with low false alarms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信