基于物联网的可控负荷微电网模型预测能量管理

Duc H. Tran, E. Sanchez, M. Nazari
{"title":"基于物联网的可控负荷微电网模型预测能量管理","authors":"Duc H. Tran, E. Sanchez, M. Nazari","doi":"10.1109/NAPS46351.2019.9000189","DOIUrl":null,"url":null,"abstract":"This paper develops an economic scheduling framework for a building microgrid with internet of things (IoT) based flexible loads to synchronize the buildings' controllable components, with occupant behavior and environmental conditions. We employ model predictive control (MPC) methods to minimize building operating costs, while maximizing the utilization of the on-site resources. The main research thrusts are 1) Developing the building microgrid model; 2) Defining different building operation strategies; 3) Minimizing the building's daily operating costs. Simulation results show that the proposed approach provides superior energy cost savings and peak load reduction in comparison with other operation controls, such as offline Mixed Integer Linear Programming (MILP), All from Utility (AFU), and MPC-MILP with non-controllable loads.","PeriodicalId":175719,"journal":{"name":"2019 North American Power Symposium (NAPS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Model Predictive Energy Management for Building Microgrids with IoT-based Controllable Loads\",\"authors\":\"Duc H. Tran, E. Sanchez, M. Nazari\",\"doi\":\"10.1109/NAPS46351.2019.9000189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops an economic scheduling framework for a building microgrid with internet of things (IoT) based flexible loads to synchronize the buildings' controllable components, with occupant behavior and environmental conditions. We employ model predictive control (MPC) methods to minimize building operating costs, while maximizing the utilization of the on-site resources. The main research thrusts are 1) Developing the building microgrid model; 2) Defining different building operation strategies; 3) Minimizing the building's daily operating costs. Simulation results show that the proposed approach provides superior energy cost savings and peak load reduction in comparison with other operation controls, such as offline Mixed Integer Linear Programming (MILP), All from Utility (AFU), and MPC-MILP with non-controllable loads.\",\"PeriodicalId\":175719,\"journal\":{\"name\":\"2019 North American Power Symposium (NAPS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS46351.2019.9000189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS46351.2019.9000189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文开发了一种基于物联网(IoT)柔性负载的建筑微电网的经济调度框架,以同步建筑物的可控组件,与居住者的行为和环境条件。我们采用模型预测控制(MPC)方法来最小化建筑运行成本,同时最大化地利用现场资源。主要研究方向为:1)建立建筑微电网模型;2)定义不同的建筑运营策略;3)最小化建筑的日常运营成本。仿真结果表明,该方法与其他运行控制方法(如离线混合整数线性规划(MILP)、全部来自公用事业(AFU)和MPC-MILP)相比,具有更好的节能效果和峰值负荷降低效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Predictive Energy Management for Building Microgrids with IoT-based Controllable Loads
This paper develops an economic scheduling framework for a building microgrid with internet of things (IoT) based flexible loads to synchronize the buildings' controllable components, with occupant behavior and environmental conditions. We employ model predictive control (MPC) methods to minimize building operating costs, while maximizing the utilization of the on-site resources. The main research thrusts are 1) Developing the building microgrid model; 2) Defining different building operation strategies; 3) Minimizing the building's daily operating costs. Simulation results show that the proposed approach provides superior energy cost savings and peak load reduction in comparison with other operation controls, such as offline Mixed Integer Linear Programming (MILP), All from Utility (AFU), and MPC-MILP with non-controllable loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信