{"title":"结合了资源保留和应用程序适应的服务质量体系结构","authors":"Ian T Foster, A. Roy, Volker Sander","doi":"10.1109/IWQOS.2000.847954","DOIUrl":null,"url":null,"abstract":"Reservation and adaptation are two well-known and effective techniques for enhancing the end-to-end performance of network applications. However, both techniques also have limitations, particularly when dealing with high-bandwidth, dynamic flows: fixed-capability reservations tend to be wasteful of resources and hinder graceful degradation in the face of congestion, while adaptive techniques fail when congestion becomes excessive. We propose an approach to quality of service (QoS) that overcomes these difficulties by combining features of reservations and adaptation. In this approach, a combination of online control interfaces for resource management, a sensor permitting online monitoring, and decision procedures embedded in resources enable a rich variety of dynamic feedback interactions between applications and resources. We describe a QoS architecture, GARA, that has been extended to support these mechanisms, and use three examples of application-level adaptive strategies to show how this framework can permit applications to adapt both their resource requests and behavior in response to online sensor information.","PeriodicalId":416650,"journal":{"name":"2000 Eighth International Workshop on Quality of Service. IWQoS 2000 (Cat. No.00EX400)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"376","resultStr":"{\"title\":\"A quality of service architecture that combines resource reservation and application adaptation\",\"authors\":\"Ian T Foster, A. Roy, Volker Sander\",\"doi\":\"10.1109/IWQOS.2000.847954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reservation and adaptation are two well-known and effective techniques for enhancing the end-to-end performance of network applications. However, both techniques also have limitations, particularly when dealing with high-bandwidth, dynamic flows: fixed-capability reservations tend to be wasteful of resources and hinder graceful degradation in the face of congestion, while adaptive techniques fail when congestion becomes excessive. We propose an approach to quality of service (QoS) that overcomes these difficulties by combining features of reservations and adaptation. In this approach, a combination of online control interfaces for resource management, a sensor permitting online monitoring, and decision procedures embedded in resources enable a rich variety of dynamic feedback interactions between applications and resources. We describe a QoS architecture, GARA, that has been extended to support these mechanisms, and use three examples of application-level adaptive strategies to show how this framework can permit applications to adapt both their resource requests and behavior in response to online sensor information.\",\"PeriodicalId\":416650,\"journal\":{\"name\":\"2000 Eighth International Workshop on Quality of Service. IWQoS 2000 (Cat. No.00EX400)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"376\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 Eighth International Workshop on Quality of Service. IWQoS 2000 (Cat. No.00EX400)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQOS.2000.847954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 Eighth International Workshop on Quality of Service. IWQoS 2000 (Cat. No.00EX400)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQOS.2000.847954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A quality of service architecture that combines resource reservation and application adaptation
Reservation and adaptation are two well-known and effective techniques for enhancing the end-to-end performance of network applications. However, both techniques also have limitations, particularly when dealing with high-bandwidth, dynamic flows: fixed-capability reservations tend to be wasteful of resources and hinder graceful degradation in the face of congestion, while adaptive techniques fail when congestion becomes excessive. We propose an approach to quality of service (QoS) that overcomes these difficulties by combining features of reservations and adaptation. In this approach, a combination of online control interfaces for resource management, a sensor permitting online monitoring, and decision procedures embedded in resources enable a rich variety of dynamic feedback interactions between applications and resources. We describe a QoS architecture, GARA, that has been extended to support these mechanisms, and use three examples of application-level adaptive strategies to show how this framework can permit applications to adapt both their resource requests and behavior in response to online sensor information.