三次del Pezzo颤振的两族变换群商

J. Blanc, E. Yasinsky
{"title":"三次del Pezzo颤振的两族变换群商","authors":"J. Blanc, E. Yasinsky","doi":"10.5802/jep.136","DOIUrl":null,"url":null,"abstract":"We prove that the group of birational transformations of a Del Pezzo fibration of degree 3 over a curve is not simple, by giving a surjective group homomorphism to a free product of infinitely many groups of order 2. As a consequence we also obtain that the Cremona group of rank 3 is not generated by birational maps preserving a rational fibration. Besides, its subgroup generated by all connected algebraic subgroups is a proper normal subgroup.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Quotients of groups of birational transformations of cubic del Pezzo fibrations\",\"authors\":\"J. Blanc, E. Yasinsky\",\"doi\":\"10.5802/jep.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the group of birational transformations of a Del Pezzo fibration of degree 3 over a curve is not simple, by giving a surjective group homomorphism to a free product of infinitely many groups of order 2. As a consequence we also obtain that the Cremona group of rank 3 is not generated by birational maps preserving a rational fibration. Besides, its subgroup generated by all connected algebraic subgroups is a proper normal subgroup.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

通过给出无穷多个2阶群的自由积的满射群同态,证明了曲线上3阶Del Pezzo振动的双变换群不是简单的。因此,我们还得到了秩3的Cremona群不是由保留合理纤维的双民族地图生成的。所有连通代数子群所生成的子群是一个真正规子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quotients of groups of birational transformations of cubic del Pezzo fibrations
We prove that the group of birational transformations of a Del Pezzo fibration of degree 3 over a curve is not simple, by giving a surjective group homomorphism to a free product of infinitely many groups of order 2. As a consequence we also obtain that the Cremona group of rank 3 is not generated by birational maps preserving a rational fibration. Besides, its subgroup generated by all connected algebraic subgroups is a proper normal subgroup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信