用于社交网络分析的MapReduce设计模式

D. Ostrowski
{"title":"用于社交网络分析的MapReduce设计模式","authors":"D. Ostrowski","doi":"10.1109/ICSC.2014.61","DOIUrl":null,"url":null,"abstract":"The MapReduce paradigm has become ubiquitous within Big Data Analytics. Within this field, Social Networks exist as an important area of applications as it relies on the large scale analysis of graphs. To enable the scalability of Social Networks, we consider the application of MapReduce design patterns for the determination of graph-based metrics. Specifically, we detail the application of a MapReduce-based solution for the metric of betweenness-centrality. The prevailing concept is separation of the graph topology from the actual graph analysis. Here, we consider the chaining of MapReduce jobs for the estimation of shortest paths in a graph as well as post processing statistics. Through our design pattern, we are able to leverage Big Data Technologies to determine metrics in the context of ever expanding internet-based data resources.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"MapReduce Design Patterns for Social Networking Analysis\",\"authors\":\"D. Ostrowski\",\"doi\":\"10.1109/ICSC.2014.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The MapReduce paradigm has become ubiquitous within Big Data Analytics. Within this field, Social Networks exist as an important area of applications as it relies on the large scale analysis of graphs. To enable the scalability of Social Networks, we consider the application of MapReduce design patterns for the determination of graph-based metrics. Specifically, we detail the application of a MapReduce-based solution for the metric of betweenness-centrality. The prevailing concept is separation of the graph topology from the actual graph analysis. Here, we consider the chaining of MapReduce jobs for the estimation of shortest paths in a graph as well as post processing statistics. Through our design pattern, we are able to leverage Big Data Technologies to determine metrics in the context of ever expanding internet-based data resources.\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2014.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

MapReduce范式在大数据分析中已经无处不在。在这个领域中,社交网络作为一个重要的应用领域存在,因为它依赖于大规模的图分析。为了实现社交网络的可扩展性,我们考虑应用MapReduce设计模式来确定基于图的指标。具体来说,我们详细介绍了基于mapreduce的间中心性度量解决方案的应用。流行的概念是图拓扑与实际图分析的分离。在这里,我们考虑MapReduce作业的链接,以估计图中的最短路径以及后处理统计。通过我们的设计模式,我们能够利用大数据技术在不断扩展的基于互联网的数据资源的背景下确定指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MapReduce Design Patterns for Social Networking Analysis
The MapReduce paradigm has become ubiquitous within Big Data Analytics. Within this field, Social Networks exist as an important area of applications as it relies on the large scale analysis of graphs. To enable the scalability of Social Networks, we consider the application of MapReduce design patterns for the determination of graph-based metrics. Specifically, we detail the application of a MapReduce-based solution for the metric of betweenness-centrality. The prevailing concept is separation of the graph topology from the actual graph analysis. Here, we consider the chaining of MapReduce jobs for the estimation of shortest paths in a graph as well as post processing statistics. Through our design pattern, we are able to leverage Big Data Technologies to determine metrics in the context of ever expanding internet-based data resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信