纳米器件时变率模型时间常数分布参数提取策略

F. Fernández, E. Roca, P. Saraza-Canflanca, J. Martín-Martínez, R. Rodríguez, M. Nafría, R. Castro-López
{"title":"纳米器件时变率模型时间常数分布参数提取策略","authors":"F. Fernández, E. Roca, P. Saraza-Canflanca, J. Martín-Martínez, R. Rodríguez, M. Nafría, R. Castro-López","doi":"10.1109/SMACD58065.2023.10192206","DOIUrl":null,"url":null,"abstract":"Time-dependent variability phenomena are stochastic and discrete for nanometer-scale technologies, and, hence, must be statistically characterized. These phenomena are attributed to the emission and capture of charges in device defects. This paper explores two different strategies to extract, from experimental data, the distribution parameters of the time constants of the defects. It delves into the accuracy of each strategy, showing how the extraction strategy can have a huge impact on the accuracy and the amount of characterization data required, and, therefore, on the amount of (expensive) characterization time in the lab.","PeriodicalId":239306,"journal":{"name":"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for parameter extraction of the time constant distribution of time-dependent variability models for nanometer-scale devices\",\"authors\":\"F. Fernández, E. Roca, P. Saraza-Canflanca, J. Martín-Martínez, R. Rodríguez, M. Nafría, R. Castro-López\",\"doi\":\"10.1109/SMACD58065.2023.10192206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-dependent variability phenomena are stochastic and discrete for nanometer-scale technologies, and, hence, must be statistically characterized. These phenomena are attributed to the emission and capture of charges in device defects. This paper explores two different strategies to extract, from experimental data, the distribution parameters of the time constants of the defects. It delves into the accuracy of each strategy, showing how the extraction strategy can have a huge impact on the accuracy and the amount of characterization data required, and, therefore, on the amount of (expensive) characterization time in the lab.\",\"PeriodicalId\":239306,\"journal\":{\"name\":\"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMACD58065.2023.10192206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD58065.2023.10192206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随时间变化的现象是随机和离散的纳米尺度技术,因此,必须统计表征。这些现象归因于器件缺陷中电荷的发射和捕获。本文探讨了从实验数据中提取缺陷时间常数分布参数的两种不同策略。它深入研究了每种策略的准确性,展示了提取策略如何对准确性和所需表征数据的数量产生巨大影响,因此,对实验室中(昂贵的)表征时间的数量产生巨大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategies for parameter extraction of the time constant distribution of time-dependent variability models for nanometer-scale devices
Time-dependent variability phenomena are stochastic and discrete for nanometer-scale technologies, and, hence, must be statistically characterized. These phenomena are attributed to the emission and capture of charges in device defects. This paper explores two different strategies to extract, from experimental data, the distribution parameters of the time constants of the defects. It delves into the accuracy of each strategy, showing how the extraction strategy can have a huge impact on the accuracy and the amount of characterization data required, and, therefore, on the amount of (expensive) characterization time in the lab.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信