使用遗传算法的VLIW asip的指令集架构探索

Roel Jordans, L. Józwiak, H. Corporaal
{"title":"使用遗传算法的VLIW asip的指令集架构探索","authors":"Roel Jordans, L. Józwiak, H. Corporaal","doi":"10.1109/MECO.2014.6862720","DOIUrl":null,"url":null,"abstract":"Genetic algorithms are commonly used for automatically solving complex design problem because exploration using genetic algorithms can consistently deliver good results when the algorithm is given a long enough run-time. However, the exploration time for problems with huge design spaces can be very long, often making exploration using a genetic algorithm practically infeasible. In this work, we present a genetic algorithm for exploring the instruction-set architecture of VLIW ASIPs and demonstrate its effectiveness by comparing it to two heuristic algorithms. We present several optimizations to the genetic algorithm configuration, and demonstrate how caching of intermediate compilation and simulation results can reduce the exploration time by an order of magnitude.","PeriodicalId":416168,"journal":{"name":"2014 3rd Mediterranean Conference on Embedded Computing (MECO)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Instruction-set architecture exploration of VLIW ASIPs using a genetic algorithm\",\"authors\":\"Roel Jordans, L. Józwiak, H. Corporaal\",\"doi\":\"10.1109/MECO.2014.6862720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic algorithms are commonly used for automatically solving complex design problem because exploration using genetic algorithms can consistently deliver good results when the algorithm is given a long enough run-time. However, the exploration time for problems with huge design spaces can be very long, often making exploration using a genetic algorithm practically infeasible. In this work, we present a genetic algorithm for exploring the instruction-set architecture of VLIW ASIPs and demonstrate its effectiveness by comparing it to two heuristic algorithms. We present several optimizations to the genetic algorithm configuration, and demonstrate how caching of intermediate compilation and simulation results can reduce the exploration time by an order of magnitude.\",\"PeriodicalId\":416168,\"journal\":{\"name\":\"2014 3rd Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 3rd Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2014.6862720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 3rd Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2014.6862720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

遗传算法通常用于自动解决复杂的设计问题,因为当算法给定足够长的运行时间时,使用遗传算法的探索可以始终提供良好的结果。然而,对于具有巨大设计空间的问题的探索时间可能非常长,通常使用遗传算法进行探索实际上是不可行的。在这项工作中,我们提出了一种遗传算法来探索VLIW asip的指令集架构,并通过将其与两种启发式算法进行比较来证明其有效性。我们介绍了遗传算法配置的几个优化,并演示了中间编译和模拟结果的缓存如何将探索时间减少一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instruction-set architecture exploration of VLIW ASIPs using a genetic algorithm
Genetic algorithms are commonly used for automatically solving complex design problem because exploration using genetic algorithms can consistently deliver good results when the algorithm is given a long enough run-time. However, the exploration time for problems with huge design spaces can be very long, often making exploration using a genetic algorithm practically infeasible. In this work, we present a genetic algorithm for exploring the instruction-set architecture of VLIW ASIPs and demonstrate its effectiveness by comparing it to two heuristic algorithms. We present several optimizations to the genetic algorithm configuration, and demonstrate how caching of intermediate compilation and simulation results can reduce the exploration time by an order of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信