{"title":"行动的语言:恢复目标导向的人类活动的句法和语义","authors":"Hilde Kuehne, A. B. Arslan, Thomas Serre","doi":"10.1109/CVPR.2014.105","DOIUrl":null,"url":null,"abstract":"This paper describes a framework for modeling human activities as temporally structured processes. Our approach is motivated by the inherently hierarchical nature of human activities and the close correspondence between human actions and speech: We model action units using Hidden Markov Models, much like words in speech. These action units then form the building blocks to model complex human activities as sentences using an action grammar. To evaluate our approach, we collected a large dataset of daily cooking activities: The dataset includes a total of 52 participants, each performing a total of 10 cooking activities in multiple real-life kitchens, resulting in over 77 hours of video footage. We evaluate the HTK toolkit, a state-of-the-art speech recognition engine, in combination with multiple video feature descriptors, for both the recognition of cooking activities (e.g., making pancakes) as well as the semantic parsing of videos into action units (e.g., cracking eggs). Our results demonstrate the benefits of structured temporal generative approaches over existing discriminative approaches in coping with the complexity of human daily life activities.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"452","resultStr":"{\"title\":\"The Language of Actions: Recovering the Syntax and Semantics of Goal-Directed Human Activities\",\"authors\":\"Hilde Kuehne, A. B. Arslan, Thomas Serre\",\"doi\":\"10.1109/CVPR.2014.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a framework for modeling human activities as temporally structured processes. Our approach is motivated by the inherently hierarchical nature of human activities and the close correspondence between human actions and speech: We model action units using Hidden Markov Models, much like words in speech. These action units then form the building blocks to model complex human activities as sentences using an action grammar. To evaluate our approach, we collected a large dataset of daily cooking activities: The dataset includes a total of 52 participants, each performing a total of 10 cooking activities in multiple real-life kitchens, resulting in over 77 hours of video footage. We evaluate the HTK toolkit, a state-of-the-art speech recognition engine, in combination with multiple video feature descriptors, for both the recognition of cooking activities (e.g., making pancakes) as well as the semantic parsing of videos into action units (e.g., cracking eggs). Our results demonstrate the benefits of structured temporal generative approaches over existing discriminative approaches in coping with the complexity of human daily life activities.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"452\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Language of Actions: Recovering the Syntax and Semantics of Goal-Directed Human Activities
This paper describes a framework for modeling human activities as temporally structured processes. Our approach is motivated by the inherently hierarchical nature of human activities and the close correspondence between human actions and speech: We model action units using Hidden Markov Models, much like words in speech. These action units then form the building blocks to model complex human activities as sentences using an action grammar. To evaluate our approach, we collected a large dataset of daily cooking activities: The dataset includes a total of 52 participants, each performing a total of 10 cooking activities in multiple real-life kitchens, resulting in over 77 hours of video footage. We evaluate the HTK toolkit, a state-of-the-art speech recognition engine, in combination with multiple video feature descriptors, for both the recognition of cooking activities (e.g., making pancakes) as well as the semantic parsing of videos into action units (e.g., cracking eggs). Our results demonstrate the benefits of structured temporal generative approaches over existing discriminative approaches in coping with the complexity of human daily life activities.