演化出一致、完整、紧凑的模糊规则集用于分类问题

J. Casillas, A. Orriols-Puig, Ester Bernadó-Mansilla
{"title":"演化出一致、完整、紧凑的模糊规则集用于分类问题","authors":"J. Casillas, A. Orriols-Puig, Ester Bernadó-Mansilla","doi":"10.1109/GEFS.2008.4484573","DOIUrl":null,"url":null,"abstract":"This paper proposes Pitts-DNF-C, a multi- objective Pittsburgh-style Learning Classifier System that evolves a set of DNF-type fuzzy rules for classification tasks. The system is explicitly designed to only explore solutions that lead to consistent, complete, and compact rule sets without redundancies and inconsistencies. The behavior of the system is analyzed on a collection of real-world data sets, showing its competitiveness in terms of performance and interpretability with respect to three other fuzzy learners.","PeriodicalId":343300,"journal":{"name":"2008 3rd International Workshop on Genetic and Evolving Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Toward evolving consistent, complete, and compact fuzzy rule sets for classification problems\",\"authors\":\"J. Casillas, A. Orriols-Puig, Ester Bernadó-Mansilla\",\"doi\":\"10.1109/GEFS.2008.4484573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes Pitts-DNF-C, a multi- objective Pittsburgh-style Learning Classifier System that evolves a set of DNF-type fuzzy rules for classification tasks. The system is explicitly designed to only explore solutions that lead to consistent, complete, and compact rule sets without redundancies and inconsistencies. The behavior of the system is analyzed on a collection of real-world data sets, showing its competitiveness in terms of performance and interpretability with respect to three other fuzzy learners.\",\"PeriodicalId\":343300,\"journal\":{\"name\":\"2008 3rd International Workshop on Genetic and Evolving Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 3rd International Workshop on Genetic and Evolving Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEFS.2008.4484573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Workshop on Genetic and Evolving Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2008.4484573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了Pitts-DNF-C,这是一个多目标匹兹堡式学习分类器系统,它进化出一组dnf类型的分类任务模糊规则。该系统明确地设计为只探索导致一致、完整和紧凑的规则集而没有冗余和不一致的解决方案。在一组真实世界的数据集上分析了系统的行为,显示了它在性能和可解释性方面相对于其他三个模糊学习器的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward evolving consistent, complete, and compact fuzzy rule sets for classification problems
This paper proposes Pitts-DNF-C, a multi- objective Pittsburgh-style Learning Classifier System that evolves a set of DNF-type fuzzy rules for classification tasks. The system is explicitly designed to only explore solutions that lead to consistent, complete, and compact rule sets without redundancies and inconsistencies. The behavior of the system is analyzed on a collection of real-world data sets, showing its competitiveness in terms of performance and interpretability with respect to three other fuzzy learners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信