基于卷积神经网络和矩不变量的静脉模式分类

Ana Teresa Vargas Barona, María Angélica Espejel Rivera, R. Castro-Ortega, C. Toxqui-Quitl, A. Padilla-Vivanco
{"title":"基于卷积神经网络和矩不变量的静脉模式分类","authors":"Ana Teresa Vargas Barona, María Angélica Espejel Rivera, R. Castro-Ortega, C. Toxqui-Quitl, A. Padilla-Vivanco","doi":"10.1117/12.2677811","DOIUrl":null,"url":null,"abstract":"Vein pattern recognition is a novel method to reliably identify or authenticate a person’s safety. It uses infrared images from the palm, wrist, or fingers, which shows the network of veins under the skin. This paper presents a Convolutional Neural Network (CNN) to classify infrared images of the hand vein pattern. The public PolyU Database is used to train the CNN. The CNN can classify 6000 vein patterns of the hand with an accuracy of 92.81%. Even more, its performance is compared with the invariant moment descriptors. In this case, vein pattern recognition is carried out on the raw images using k-Nearest Neighbors (k-NN) and invariant Zernike moments. An accuracy of 99.97% is obtained.","PeriodicalId":434863,"journal":{"name":"Optical Engineering + Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vein pattern classification using convolutional neuronal network and moment invariants\",\"authors\":\"Ana Teresa Vargas Barona, María Angélica Espejel Rivera, R. Castro-Ortega, C. Toxqui-Quitl, A. Padilla-Vivanco\",\"doi\":\"10.1117/12.2677811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vein pattern recognition is a novel method to reliably identify or authenticate a person’s safety. It uses infrared images from the palm, wrist, or fingers, which shows the network of veins under the skin. This paper presents a Convolutional Neural Network (CNN) to classify infrared images of the hand vein pattern. The public PolyU Database is used to train the CNN. The CNN can classify 6000 vein patterns of the hand with an accuracy of 92.81%. Even more, its performance is compared with the invariant moment descriptors. In this case, vein pattern recognition is carried out on the raw images using k-Nearest Neighbors (k-NN) and invariant Zernike moments. An accuracy of 99.97% is obtained.\",\"PeriodicalId\":434863,\"journal\":{\"name\":\"Optical Engineering + Applications\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Engineering + Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2677811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Engineering + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2677811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

静脉模式识别是一种可靠识别或验证人身安全的新方法。它使用手掌、手腕或手指的红外图像来显示皮肤下的静脉网络。本文提出了一种卷积神经网络(CNN)对手部静脉模式的红外图像进行分类。使用公开的理大数据库来训练CNN。CNN可以对手部的6000种静脉模式进行分类,准确率达到92.81%。并且,将其性能与不变矩描述子进行了比较。在这种情况下,使用k-最近邻(k-NN)和不变泽尼克矩对原始图像进行静脉模式识别。得到了99.97%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vein pattern classification using convolutional neuronal network and moment invariants
Vein pattern recognition is a novel method to reliably identify or authenticate a person’s safety. It uses infrared images from the palm, wrist, or fingers, which shows the network of veins under the skin. This paper presents a Convolutional Neural Network (CNN) to classify infrared images of the hand vein pattern. The public PolyU Database is used to train the CNN. The CNN can classify 6000 vein patterns of the hand with an accuracy of 92.81%. Even more, its performance is compared with the invariant moment descriptors. In this case, vein pattern recognition is carried out on the raw images using k-Nearest Neighbors (k-NN) and invariant Zernike moments. An accuracy of 99.97% is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信