基于新型无标记微阵列的增量肿瘤诊断算法

Hualong Yu, Guochang Gu, Haibo Liu, Jing Shen, Changming Zhu, Jun Ni
{"title":"基于新型无标记微阵列的增量肿瘤诊断算法","authors":"Hualong Yu, Guochang Gu, Haibo Liu, Jing Shen, Changming Zhu, Jun Ni","doi":"10.1109/IMSCCS.2008.30","DOIUrl":null,"url":null,"abstract":"This paper presents an implementation of incremental tumor diagnosis algorithm (ITDA) on microarray data for improving diagnostic accuracy of tumor. A classifier (BP or KNN) was used in the algorithm to estimate confidences of a new unlabeled sample in different classes. When one confidence is higher than the threshold, the sample will be labeled; otherwise, the sample will be diagnosed by medical expert with other approaches. With more and more new labeled samples adding in the labeled samples list, the classifier will be better and will provide more accurate diagnosis for new sample. Strictly speaking, it is a particular active learning algorithm. By applying this algorithm on Colon tumor dataset, we demonstrated that our incremental tumor diagnosis algorithm can be used to successfully improve diagnostic accuracy of tumor. The performance of different parameters was tested in our experiments to verify the applicability of the method.","PeriodicalId":122953,"journal":{"name":"2008 International Multi-symposiums on Computer and Computational Sciences","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Incremental Tumor Diagnosis Algorithm Using New Unlabeled Microarray\",\"authors\":\"Hualong Yu, Guochang Gu, Haibo Liu, Jing Shen, Changming Zhu, Jun Ni\",\"doi\":\"10.1109/IMSCCS.2008.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an implementation of incremental tumor diagnosis algorithm (ITDA) on microarray data for improving diagnostic accuracy of tumor. A classifier (BP or KNN) was used in the algorithm to estimate confidences of a new unlabeled sample in different classes. When one confidence is higher than the threshold, the sample will be labeled; otherwise, the sample will be diagnosed by medical expert with other approaches. With more and more new labeled samples adding in the labeled samples list, the classifier will be better and will provide more accurate diagnosis for new sample. Strictly speaking, it is a particular active learning algorithm. By applying this algorithm on Colon tumor dataset, we demonstrated that our incremental tumor diagnosis algorithm can be used to successfully improve diagnostic accuracy of tumor. The performance of different parameters was tested in our experiments to verify the applicability of the method.\",\"PeriodicalId\":122953,\"journal\":{\"name\":\"2008 International Multi-symposiums on Computer and Computational Sciences\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Multi-symposiums on Computer and Computational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMSCCS.2008.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Multi-symposiums on Computer and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSCCS.2008.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于微阵列数据的增量肿瘤诊断算法(ITDA),以提高肿瘤的诊断准确性。算法中使用BP或KNN分类器来估计新的未标记样本在不同类别中的置信度。当一个置信度高于阈值时,对样本进行标记;否则,样本将由医学专家用其他方法进行诊断。随着越来越多的新标记样本加入到标记样本列表中,分类器将会更好,对新样本提供更准确的诊断。严格来说,它是一种特殊的主动学习算法。通过在结肠肿瘤数据集上的应用,我们证明了我们的增量肿瘤诊断算法可以成功地提高肿瘤的诊断准确率。在实验中对不同参数的性能进行了测试,验证了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Tumor Diagnosis Algorithm Using New Unlabeled Microarray
This paper presents an implementation of incremental tumor diagnosis algorithm (ITDA) on microarray data for improving diagnostic accuracy of tumor. A classifier (BP or KNN) was used in the algorithm to estimate confidences of a new unlabeled sample in different classes. When one confidence is higher than the threshold, the sample will be labeled; otherwise, the sample will be diagnosed by medical expert with other approaches. With more and more new labeled samples adding in the labeled samples list, the classifier will be better and will provide more accurate diagnosis for new sample. Strictly speaking, it is a particular active learning algorithm. By applying this algorithm on Colon tumor dataset, we demonstrated that our incremental tumor diagnosis algorithm can be used to successfully improve diagnostic accuracy of tumor. The performance of different parameters was tested in our experiments to verify the applicability of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信