{"title":"基于fpga的浮点数据流硬件压缩和解压缩的段并行预测器,以提高内存I/O带宽","authors":"K. Sano, Kazuya Katahira, S. Yamamoto","doi":"10.1109/DCC.2010.44","DOIUrl":null,"url":null,"abstract":"This paper presents segment-parallel prediction for high-throughput compression and decompression of floating-point data streams on an FPGA-based LBM accelerator. In order to enhance the actual memory I/O bandwidth of the accelerator, we focus on the prediction-based compression of floating-point data streams. Although hardware implementation is essential to high-throughput compression, the feedback loop in the decompressor is a bottleneck due to sequential predictions necessary for bit reconstruction. We introduce a segment-parallel approach to the 1D polynomial predictor to achieve the required throughput for decompression. We evaluate the compression ratio of the segment-parallel cubic prediction with various encoders of prediction difference.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Segment-Parallel Predictor for FPGA-Based Hardware Compressor and Decompressor of Floating-Point Data Streams to Enhance Memory I/O Bandwidth\",\"authors\":\"K. Sano, Kazuya Katahira, S. Yamamoto\",\"doi\":\"10.1109/DCC.2010.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents segment-parallel prediction for high-throughput compression and decompression of floating-point data streams on an FPGA-based LBM accelerator. In order to enhance the actual memory I/O bandwidth of the accelerator, we focus on the prediction-based compression of floating-point data streams. Although hardware implementation is essential to high-throughput compression, the feedback loop in the decompressor is a bottleneck due to sequential predictions necessary for bit reconstruction. We introduce a segment-parallel approach to the 1D polynomial predictor to achieve the required throughput for decompression. We evaluate the compression ratio of the segment-parallel cubic prediction with various encoders of prediction difference.\",\"PeriodicalId\":299459,\"journal\":{\"name\":\"2010 Data Compression Conference\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2010.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segment-Parallel Predictor for FPGA-Based Hardware Compressor and Decompressor of Floating-Point Data Streams to Enhance Memory I/O Bandwidth
This paper presents segment-parallel prediction for high-throughput compression and decompression of floating-point data streams on an FPGA-based LBM accelerator. In order to enhance the actual memory I/O bandwidth of the accelerator, we focus on the prediction-based compression of floating-point data streams. Although hardware implementation is essential to high-throughput compression, the feedback loop in the decompressor is a bottleneck due to sequential predictions necessary for bit reconstruction. We introduce a segment-parallel approach to the 1D polynomial predictor to achieve the required throughput for decompression. We evaluate the compression ratio of the segment-parallel cubic prediction with various encoders of prediction difference.