具有模糊交互支付的投资项目内部收益率

V. Gisin, E. Volkova
{"title":"具有模糊交互支付的投资项目内部收益率","authors":"V. Gisin, E. Volkova","doi":"10.1109/SCM.2017.7970705","DOIUrl":null,"url":null,"abstract":"The internal rate of return of a fuzzy cash flow can be naturally presented as a solution of an algebraic equation with fuzzy coefficients. In this paper we construct fuzzy rate of return using the extension principle. We give an analog of the Norstrom condition providing the existence of a unique internal rate of return. To take into account the interaction of payments, we consider addition of fuzzy quantities with respect to triangular norms.","PeriodicalId":315574,"journal":{"name":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Internal rate of return of investment projects with fuzzy interactive payments\",\"authors\":\"V. Gisin, E. Volkova\",\"doi\":\"10.1109/SCM.2017.7970705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The internal rate of return of a fuzzy cash flow can be naturally presented as a solution of an algebraic equation with fuzzy coefficients. In this paper we construct fuzzy rate of return using the extension principle. We give an analog of the Norstrom condition providing the existence of a unique internal rate of return. To take into account the interaction of payments, we consider addition of fuzzy quantities with respect to triangular norms.\",\"PeriodicalId\":315574,\"journal\":{\"name\":\"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCM.2017.7970705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM.2017.7970705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

模糊现金流的内部收益率可以很自然地表示为具有模糊系数的代数方程的解。本文利用可拓原理构造了模糊收益率。我们给出了诺斯特伦条件的一个模拟,提供了一个唯一的内部收益率的存在。为了考虑到支付的相互作用,我们考虑了关于三角规范的模糊量的添加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internal rate of return of investment projects with fuzzy interactive payments
The internal rate of return of a fuzzy cash flow can be naturally presented as a solution of an algebraic equation with fuzzy coefficients. In this paper we construct fuzzy rate of return using the extension principle. We give an analog of the Norstrom condition providing the existence of a unique internal rate of return. To take into account the interaction of payments, we consider addition of fuzzy quantities with respect to triangular norms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信