Abdi Sukmono
{"title":"IDENTIFIKASI KEKERINGAN LAHAN SAWAH MENGGUNAKAN KOMBINASI LEAF WATER CONTENT INDEX DAN VEGETATION INDEX DENGAN CITRA LANDSAT-8","authors":"Abdi Sukmono","doi":"10.14710/elipsoida.2018.3703","DOIUrl":null,"url":null,"abstract":"Kekeringan lahan sawah merupakan salah satu ancaman bagi produksi pertanian di Indonesia. Ancaman ini menjadi sangat serius ketika terjadi kemarau panjang yang merupakan efek dari El Nino. Kekeringan ini dapat mengakibatkan sawah menjadi puso atau gagal panen. Dampak kekeringan ini dapat diminimalkan dengan upaya identifikasi kekerigan lahan sawah secara dini. Berbagai teknik identifikasi kekeringan lahan sawah telah dikembangkan, salah satunya dengan teknologi citra satelit. Pada identifikasi kekeringan lahan sawah dengan data citra satelit dibutuhkan suatu algoritma khusus. Penelitian ini memanfaatkan kombinasi antara Leaf Water Content Index (LWCI) dan Enhanced Vegetation Index (EVI) untuk mendapatkan Rice Water Stress Index. Rice Water Stress Index ini digunakan untuk identifikasi kekeringan lahan sawah di wilayah Kabupaten Kendal tahun 2015. Identifikasi kekeringan lahan dapat dikelompokkan dalam empat kelas (Sangat sehat, Normal, Potensial kekeringan, dan Kekeringan). Hasil uji akurasi identifikasi kekeringan sawah dengan Rice Water Stress Index ini menghasilkan akurasi sebesar 87,5 %.","PeriodicalId":190139,"journal":{"name":"Elipsoida : Jurnal Geodesi dan Geomatika","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elipsoida : Jurnal Geodesi dan Geomatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/elipsoida.2018.3703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

稻田干旱是对印尼农业生产的威胁之一。当长期干旱导致厄尔尼诺现象时,威胁变得非常严重。干旱会导致稻田变成水坑或作物歉收。这场干旱的影响可以最小化过早地努力识别kekerigan亩稻田。各种干旱亩稻田识别技术已经开发,卫星图像技术的其中一种。用卫星图像识别干旱需要一种特殊的算法。这项研究利用叶水的结合内容索引(LWCI)和增强植被指数(赖斯EVI)为了得到水压力指数。这是一种稻水压力指标,用于确定2015年肯德尔区稻田的干旱。干旱的土地可以被识别(正常的身体非常健康,四门课程中,潜在的干旱和干旱)。识别准确率干旱和赖斯稻田水压力测试这一指数产生准确度高达某校学生%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IDENTIFIKASI KEKERINGAN LAHAN SAWAH MENGGUNAKAN KOMBINASI LEAF WATER CONTENT INDEX DAN VEGETATION INDEX DENGAN CITRA LANDSAT-8
Kekeringan lahan sawah merupakan salah satu ancaman bagi produksi pertanian di Indonesia. Ancaman ini menjadi sangat serius ketika terjadi kemarau panjang yang merupakan efek dari El Nino. Kekeringan ini dapat mengakibatkan sawah menjadi puso atau gagal panen. Dampak kekeringan ini dapat diminimalkan dengan upaya identifikasi kekerigan lahan sawah secara dini. Berbagai teknik identifikasi kekeringan lahan sawah telah dikembangkan, salah satunya dengan teknologi citra satelit. Pada identifikasi kekeringan lahan sawah dengan data citra satelit dibutuhkan suatu algoritma khusus. Penelitian ini memanfaatkan kombinasi antara Leaf Water Content Index (LWCI) dan Enhanced Vegetation Index (EVI) untuk mendapatkan Rice Water Stress Index. Rice Water Stress Index ini digunakan untuk identifikasi kekeringan lahan sawah di wilayah Kabupaten Kendal tahun 2015. Identifikasi kekeringan lahan dapat dikelompokkan dalam empat kelas (Sangat sehat, Normal, Potensial kekeringan, dan Kekeringan). Hasil uji akurasi identifikasi kekeringan sawah dengan Rice Water Stress Index ini menghasilkan akurasi sebesar 87,5 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信