一般线性李超代数的奇奇异向量公式

Jie Liu, Lipeng Luo, Weiqiang Wang
{"title":"一般线性李超代数的奇奇异向量公式","authors":"Jie Liu, Lipeng Luo, Weiqiang Wang","doi":"10.21915/bimas.2019401","DOIUrl":null,"url":null,"abstract":"We establish a closed formula for a singular vector of weight $\\lambda-\\beta$ in the Verma module of highest weight $\\lambda$ for Lie superalgebra $\\mathfrak{gl}(m|n)$ when $\\lambda$ is atypical with respect to an odd positive root $\\beta$. It is further shown that this vector is unique up to a scalar multiple, and it descends to a singular vector, again unique up to a scalar multiple, in the corresponding Kac module when both $\\lambda$ and $\\lambda-\\beta$ are dominant integral.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Odd Singular Vector Formula for General Linear Lie Superalgebras\",\"authors\":\"Jie Liu, Lipeng Luo, Weiqiang Wang\",\"doi\":\"10.21915/bimas.2019401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a closed formula for a singular vector of weight $\\\\lambda-\\\\beta$ in the Verma module of highest weight $\\\\lambda$ for Lie superalgebra $\\\\mathfrak{gl}(m|n)$ when $\\\\lambda$ is atypical with respect to an odd positive root $\\\\beta$. It is further shown that this vector is unique up to a scalar multiple, and it descends to a singular vector, again unique up to a scalar multiple, in the corresponding Kac module when both $\\\\lambda$ and $\\\\lambda-\\\\beta$ are dominant integral.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/bimas.2019401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2019401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于李超代数$\mathfrak{gl}(m|n)$,当$\lambda$对于奇正根$\beta$是非典型时,我们在最高权值$\lambda$的Verma模中建立了一个权值为$\lambda-\beta$的奇异向量的封闭公式。进一步证明,当$\lambda$和$\lambda-\beta$都是优势积分时,在相应的Kac模块中,该向量在一个标量倍数以内是唯一的,并且它下降到一个奇异向量,在一个标量倍数以内也是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Odd Singular Vector Formula for General Linear Lie Superalgebras
We establish a closed formula for a singular vector of weight $\lambda-\beta$ in the Verma module of highest weight $\lambda$ for Lie superalgebra $\mathfrak{gl}(m|n)$ when $\lambda$ is atypical with respect to an odd positive root $\beta$. It is further shown that this vector is unique up to a scalar multiple, and it descends to a singular vector, again unique up to a scalar multiple, in the corresponding Kac module when both $\lambda$ and $\lambda-\beta$ are dominant integral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信