使用全景拼接创建可视场景

Saja Alferidah, Nora Alkhaldi
{"title":"使用全景拼接创建可视场景","authors":"Saja Alferidah, Nora Alkhaldi","doi":"10.15439/2019F282","DOIUrl":null,"url":null,"abstract":"Image stitching refers to the process of combining multiple images of the same scene to produce a single high-resolution image, known as panorama stitching. The aim of this paper is to produce a high-quality stitched panorama image with less computation time. This is achieved by proposing four combinations of algorithms. First combination includes FAST corner detector, Brute Force K-Nearest Neighbor (KNN) and Random Sample Consensus (RANSAC). Second combination includes FAST, Brute Force (KNN) and Progressive Sample Consensus (PROSAC). Third combination includes ORB, Brute Force (KNN) and RANSAC. Fourth combination contains ORB, Brute Force (KNN) and PROSAC. Next, each combination involves a calculation of Transformation Matrix. The results demonstrated that the fourth combination produced a panoramic image with the highest performance and better quality compared to other combinations. The processing time is reduced by 67% for the third combination and by 68% for the fourth combination compared to stat-of-the-art.","PeriodicalId":168208,"journal":{"name":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"412 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creating See-Around Scenes using Panorama Stitching\",\"authors\":\"Saja Alferidah, Nora Alkhaldi\",\"doi\":\"10.15439/2019F282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image stitching refers to the process of combining multiple images of the same scene to produce a single high-resolution image, known as panorama stitching. The aim of this paper is to produce a high-quality stitched panorama image with less computation time. This is achieved by proposing four combinations of algorithms. First combination includes FAST corner detector, Brute Force K-Nearest Neighbor (KNN) and Random Sample Consensus (RANSAC). Second combination includes FAST, Brute Force (KNN) and Progressive Sample Consensus (PROSAC). Third combination includes ORB, Brute Force (KNN) and RANSAC. Fourth combination contains ORB, Brute Force (KNN) and PROSAC. Next, each combination involves a calculation of Transformation Matrix. The results demonstrated that the fourth combination produced a panoramic image with the highest performance and better quality compared to other combinations. The processing time is reduced by 67% for the third combination and by 68% for the fourth combination compared to stat-of-the-art.\",\"PeriodicalId\":168208,\"journal\":{\"name\":\"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"volume\":\"412 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15439/2019F282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2019F282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像拼接是指将同一场景的多幅图像组合成一张高分辨率图像的过程,称为全景拼接。本文的目标是用更少的计算时间生成高质量的拼接全景图像。这是通过提出四种算法组合来实现的。第一种组合包括FAST角检测器、KNN (Brute Force K-Nearest Neighbor)和RANSAC (Random Sample Consensus)。第二种组合包括FAST, Brute Force (KNN)和Progressive Sample Consensus (PROSAC)。第三种组合包括ORB、Brute Force (KNN)和RANSAC。第四种组合包含ORB、Brute Force (KNN)和PROSAC。接下来,每个组合都涉及到变换矩阵的计算。结果表明,与其他组合相比,第四种组合产生的全景图像具有最高的性能和更好的质量。与最先进的组合相比,第三种组合的处理时间减少了67%,第四种组合的处理时间减少了68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Creating See-Around Scenes using Panorama Stitching
Image stitching refers to the process of combining multiple images of the same scene to produce a single high-resolution image, known as panorama stitching. The aim of this paper is to produce a high-quality stitched panorama image with less computation time. This is achieved by proposing four combinations of algorithms. First combination includes FAST corner detector, Brute Force K-Nearest Neighbor (KNN) and Random Sample Consensus (RANSAC). Second combination includes FAST, Brute Force (KNN) and Progressive Sample Consensus (PROSAC). Third combination includes ORB, Brute Force (KNN) and RANSAC. Fourth combination contains ORB, Brute Force (KNN) and PROSAC. Next, each combination involves a calculation of Transformation Matrix. The results demonstrated that the fourth combination produced a panoramic image with the highest performance and better quality compared to other combinations. The processing time is reduced by 67% for the third combination and by 68% for the fourth combination compared to stat-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信