{"title":"Cover定理在CI观测器性能评价中的应用","authors":"F. Samuelson, David G. Brown","doi":"10.1109/IJCNN.2011.6033334","DOIUrl":null,"url":null,"abstract":"For any N points arbitrarily located in a d-dimensional space, Thomas Cover popularized and augmented a theorem that gives an expression for the number of the 2N possible two-class dichotomies of those points that are separable by a hyperplane. Since separation of two-class dichotomies in d dimensions is a common problem addressed by computational intelligence (CI) decision functions or “observers,” Cover's theorem provides a benchmark against which CI observer performance can be measured. We demonstrate that the performance of a simple perceptron approaches the ideal performance and how a single layer MLP and an SVM fare in comparison. We show how Cover's theorem can be used to develop a procedure for CI parameter optimization and to serve as a descriptor of CI complexity. Both simulated and micro-array genomic data are used.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Application of Cover's theorem to the evaluation of the performance of CI observers\",\"authors\":\"F. Samuelson, David G. Brown\",\"doi\":\"10.1109/IJCNN.2011.6033334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any N points arbitrarily located in a d-dimensional space, Thomas Cover popularized and augmented a theorem that gives an expression for the number of the 2N possible two-class dichotomies of those points that are separable by a hyperplane. Since separation of two-class dichotomies in d dimensions is a common problem addressed by computational intelligence (CI) decision functions or “observers,” Cover's theorem provides a benchmark against which CI observer performance can be measured. We demonstrate that the performance of a simple perceptron approaches the ideal performance and how a single layer MLP and an SVM fare in comparison. We show how Cover's theorem can be used to develop a procedure for CI parameter optimization and to serve as a descriptor of CI complexity. Both simulated and micro-array genomic data are used.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Cover's theorem to the evaluation of the performance of CI observers
For any N points arbitrarily located in a d-dimensional space, Thomas Cover popularized and augmented a theorem that gives an expression for the number of the 2N possible two-class dichotomies of those points that are separable by a hyperplane. Since separation of two-class dichotomies in d dimensions is a common problem addressed by computational intelligence (CI) decision functions or “observers,” Cover's theorem provides a benchmark against which CI observer performance can be measured. We demonstrate that the performance of a simple perceptron approaches the ideal performance and how a single layer MLP and an SVM fare in comparison. We show how Cover's theorem can be used to develop a procedure for CI parameter optimization and to serve as a descriptor of CI complexity. Both simulated and micro-array genomic data are used.