马尔可夫逻辑网络判别结构学习的启发式方法

Quang-Thang Dinh, M. Exbrayat, Christel Vrain
{"title":"马尔可夫逻辑网络判别结构学习的启发式方法","authors":"Quang-Thang Dinh, M. Exbrayat, Christel Vrain","doi":"10.1109/ICMLA.2010.31","DOIUrl":null,"url":null,"abstract":"In this paper, we present a heuristic-based algorithm to learn discriminative MLN structures automatically, directly from a training dataset. The algorithm heuristically transforms the relational dataset into boolean tables from which it builds candidate clauses for learning the final MLN. Comparisons to the state-of-the-art structure learning algorithms for MLNs in the three real-world domains show that the proposed algorithm outperforms them in terms of the conditional log likelihood (CLL), and the area under the precision-recall curve (AUC).","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heuristic Method for Discriminative Structure Learning of Markov Logic Networks\",\"authors\":\"Quang-Thang Dinh, M. Exbrayat, Christel Vrain\",\"doi\":\"10.1109/ICMLA.2010.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a heuristic-based algorithm to learn discriminative MLN structures automatically, directly from a training dataset. The algorithm heuristically transforms the relational dataset into boolean tables from which it builds candidate clauses for learning the final MLN. Comparisons to the state-of-the-art structure learning algorithms for MLNs in the three real-world domains show that the proposed algorithm outperforms them in terms of the conditional log likelihood (CLL), and the area under the precision-recall curve (AUC).\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种基于启发式的算法,直接从训练数据集中自动学习判别MLN结构。该算法启发式地将关系数据集转换为布尔表,并从中构建候选子句以学习最终的MLN。与三个现实世界领域中最先进的mln结构学习算法的比较表明,所提出的算法在条件对数似然(CLL)和精确召回率曲线(AUC)下的面积方面优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heuristic Method for Discriminative Structure Learning of Markov Logic Networks
In this paper, we present a heuristic-based algorithm to learn discriminative MLN structures automatically, directly from a training dataset. The algorithm heuristically transforms the relational dataset into boolean tables from which it builds candidate clauses for learning the final MLN. Comparisons to the state-of-the-art structure learning algorithms for MLNs in the three real-world domains show that the proposed algorithm outperforms them in terms of the conditional log likelihood (CLL), and the area under the precision-recall curve (AUC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信