{"title":"模糊数学形态学:一般概念和分解性质","authors":"M. Nachtegael, E. Kerre","doi":"10.1109/KES.1999.820171","DOIUrl":null,"url":null,"abstract":"Fuzzy mathematical morphology is an alternative extension of binary morphology to gray-scale morphology, using techniques from fuzzy set theory and fuzzy logic. The authors discuss a general logical framework for discrete morphology and investigate the decomposition of the fuzzy morphological operations in this framework.","PeriodicalId":192359,"journal":{"name":"1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fuzzy mathematical morphology: general concepts and decomposition properties\",\"authors\":\"M. Nachtegael, E. Kerre\",\"doi\":\"10.1109/KES.1999.820171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy mathematical morphology is an alternative extension of binary morphology to gray-scale morphology, using techniques from fuzzy set theory and fuzzy logic. The authors discuss a general logical framework for discrete morphology and investigate the decomposition of the fuzzy morphological operations in this framework.\",\"PeriodicalId\":192359,\"journal\":{\"name\":\"1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KES.1999.820171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1999.820171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy mathematical morphology: general concepts and decomposition properties
Fuzzy mathematical morphology is an alternative extension of binary morphology to gray-scale morphology, using techniques from fuzzy set theory and fuzzy logic. The authors discuss a general logical framework for discrete morphology and investigate the decomposition of the fuzzy morphological operations in this framework.