一种改进的无锚目标检测方法

YuHu Han, Tonghe Ding, Tianping Li, Meng Li
{"title":"一种改进的无锚目标检测方法","authors":"YuHu Han, Tonghe Ding, Tianping Li, Meng Li","doi":"10.1109/MLISE57402.2022.00009","DOIUrl":null,"url":null,"abstract":"Object detection plays an important role in various industries. However, a fully convolutional one-stage detector (FCOS) has high computational cost and low detection accuracy. Therefore, in this paper, we fused the attention module (CBAM) with feature pyramid (FPN) to extract important feature information, suppress useless information and improve detection accuracy. Finally, we use inverted residual convolution block to replace the detection head of the original method, and the improved detection head reduces the calculation cost and amount of calculation. We use PASCAL VOC to train and evaluate our network. Experimental results show that, compared with the traditional method, the detection accuracy is improved by 1.2%, and the number of parameters is reduced by 4.2m.","PeriodicalId":350291,"journal":{"name":"2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Anchor-Free Object Detection Method\",\"authors\":\"YuHu Han, Tonghe Ding, Tianping Li, Meng Li\",\"doi\":\"10.1109/MLISE57402.2022.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection plays an important role in various industries. However, a fully convolutional one-stage detector (FCOS) has high computational cost and low detection accuracy. Therefore, in this paper, we fused the attention module (CBAM) with feature pyramid (FPN) to extract important feature information, suppress useless information and improve detection accuracy. Finally, we use inverted residual convolution block to replace the detection head of the original method, and the improved detection head reduces the calculation cost and amount of calculation. We use PASCAL VOC to train and evaluate our network. Experimental results show that, compared with the traditional method, the detection accuracy is improved by 1.2%, and the number of parameters is reduced by 4.2m.\",\"PeriodicalId\":350291,\"journal\":{\"name\":\"2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLISE57402.2022.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLISE57402.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标检测在各行业中发挥着重要的作用。然而,全卷积单级检测器(FCOS)计算成本高,检测精度低。因此,本文将注意力模块(CBAM)与特征金字塔(FPN)相融合,提取重要特征信息,抑制无用信息,提高检测精度。最后,我们使用倒残差卷积块替换原方法的检测头,改进后的检测头降低了计算成本和计算量。我们使用PASCAL VOC来训练和评估我们的网络。实验结果表明,与传统方法相比,该方法的检测精度提高了1.2%,参数个数减少了4.2万个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Anchor-Free Object Detection Method
Object detection plays an important role in various industries. However, a fully convolutional one-stage detector (FCOS) has high computational cost and low detection accuracy. Therefore, in this paper, we fused the attention module (CBAM) with feature pyramid (FPN) to extract important feature information, suppress useless information and improve detection accuracy. Finally, we use inverted residual convolution block to replace the detection head of the original method, and the improved detection head reduces the calculation cost and amount of calculation. We use PASCAL VOC to train and evaluate our network. Experimental results show that, compared with the traditional method, the detection accuracy is improved by 1.2%, and the number of parameters is reduced by 4.2m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信