利用深度学习衍生的偏置力增强核酸结构的采样

E. Salawu
{"title":"利用深度学习衍生的偏置力增强核酸结构的采样","authors":"E. Salawu","doi":"10.1109/SSCI47803.2020.9308559","DOIUrl":null,"url":null,"abstract":"The conformation spaces (CS) of macromolecules and their associated dynamics are of vital importance in the understanding of many biochemical functions as well as diseases and in the developments of drugs for curing or managing disease conditions. While the exploration of the CS is generally easier for molecules with fewer atoms (such as ligands and short peptides), achieving the same for larger molecules (such as nucleic acids and proteins) beyond a narrow local equilibrium is non-trivial and sometimes computationally prohibitive. In this work, we present Deep Enhanced Sampling of Nucleic Acids’ Structures Using Deep-Learning-Derived Biasing Forces (DESNA, pronounced DES-na), that combines variational autoencoder, a special deep neural network (DNN), and molecular dynamics (MD) simulations to create a robust technique for enhanced sampling, in which DNN-learned latent space is used for inferring appropriate biasing potentials for guiding the MD simulations. The results obtained show that DESNA performs better than conventional MD simulations and efficiently samples wider CS than conventional MD simulations even when DESNA is allowed to run for as short as 10% of the length of conventional MD simulations. This suggests that DESNA is at least 10 times more efficient that conventional MD simulations in its sampling of CS of molecules.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced Sampling of Nucleic Acids’ Structures Using Deep-Learning-Derived Biasing Forces\",\"authors\":\"E. Salawu\",\"doi\":\"10.1109/SSCI47803.2020.9308559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conformation spaces (CS) of macromolecules and their associated dynamics are of vital importance in the understanding of many biochemical functions as well as diseases and in the developments of drugs for curing or managing disease conditions. While the exploration of the CS is generally easier for molecules with fewer atoms (such as ligands and short peptides), achieving the same for larger molecules (such as nucleic acids and proteins) beyond a narrow local equilibrium is non-trivial and sometimes computationally prohibitive. In this work, we present Deep Enhanced Sampling of Nucleic Acids’ Structures Using Deep-Learning-Derived Biasing Forces (DESNA, pronounced DES-na), that combines variational autoencoder, a special deep neural network (DNN), and molecular dynamics (MD) simulations to create a robust technique for enhanced sampling, in which DNN-learned latent space is used for inferring appropriate biasing potentials for guiding the MD simulations. The results obtained show that DESNA performs better than conventional MD simulations and efficiently samples wider CS than conventional MD simulations even when DESNA is allowed to run for as short as 10% of the length of conventional MD simulations. This suggests that DESNA is at least 10 times more efficient that conventional MD simulations in its sampling of CS of molecules.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大分子的构象空间(CS)及其相关动力学在理解许多生化功能和疾病以及治疗或控制疾病的药物开发中具有至关重要的意义。虽然对于原子较少的分子(如配体和短肽)来说,CS的探索通常更容易,但对于超过狭窄局部平衡的大分子(如核酸和蛋白质)来说,要实现相同的目标并非易事,有时在计算上是令人望而却步的。在这项工作中,我们提出了使用深度学习衍生偏压力(DESNA,发音为DES-na)对核酸结构进行深度增强采样,该采样结合了变分自编码器、特殊的深度神经网络(DNN)和分子动力学(MD)模拟,以创建一种鲁棒的增强采样技术,其中DNN学习的潜在空间用于推断适当的偏压电位,以指导MD模拟。结果表明,即使允许DESNA运行仅为传统MD模拟长度的10%,DESNA也比传统MD模拟表现更好,并且比传统MD模拟有效地采样更宽的CS。这表明DESNA在分子CS采样方面的效率至少是传统MD模拟的10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Sampling of Nucleic Acids’ Structures Using Deep-Learning-Derived Biasing Forces
The conformation spaces (CS) of macromolecules and their associated dynamics are of vital importance in the understanding of many biochemical functions as well as diseases and in the developments of drugs for curing or managing disease conditions. While the exploration of the CS is generally easier for molecules with fewer atoms (such as ligands and short peptides), achieving the same for larger molecules (such as nucleic acids and proteins) beyond a narrow local equilibrium is non-trivial and sometimes computationally prohibitive. In this work, we present Deep Enhanced Sampling of Nucleic Acids’ Structures Using Deep-Learning-Derived Biasing Forces (DESNA, pronounced DES-na), that combines variational autoencoder, a special deep neural network (DNN), and molecular dynamics (MD) simulations to create a robust technique for enhanced sampling, in which DNN-learned latent space is used for inferring appropriate biasing potentials for guiding the MD simulations. The results obtained show that DESNA performs better than conventional MD simulations and efficiently samples wider CS than conventional MD simulations even when DESNA is allowed to run for as short as 10% of the length of conventional MD simulations. This suggests that DESNA is at least 10 times more efficient that conventional MD simulations in its sampling of CS of molecules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信