永磁电机定子电阻三种估计方法的比较

Alia R. Strandt, Andrew P. Strandt, S. Schneider, E. Yaz
{"title":"永磁电机定子电阻三种估计方法的比较","authors":"Alia R. Strandt, Andrew P. Strandt, S. Schneider, E. Yaz","doi":"10.11159/cdsr20.139","DOIUrl":null,"url":null,"abstract":"- In this work, three adaptive estimation methods are considered for the identification of the stator winding resistance of an interior permanent magnet motor. The layout of the magnets in the motor under consideration produces a trapezoidal back electromotive force (emf), which is more challenging for the estimators due to the introduction of higher order harmonics. The three estimation techniques are compared in terms of accuracy in estimating the true parameter value. The multiple model estimation (MME) algorithm utilizing Kalman filters provides the most accurate estimate with the least computational complexity while the additional complexity of the extended Kalman filter (EKF) and the fading memory extended Kalman filter (FM-EKF) results in a poor estimate of the parameter.","PeriodicalId":140916,"journal":{"name":"Proceedings of the 7th International Conference of Control, Dynamic Systems, and Robotics (CDSR'20)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Three Stator Resistance Estimation Methods for a\\nPermanent Magnet Motor\",\"authors\":\"Alia R. Strandt, Andrew P. Strandt, S. Schneider, E. Yaz\",\"doi\":\"10.11159/cdsr20.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- In this work, three adaptive estimation methods are considered for the identification of the stator winding resistance of an interior permanent magnet motor. The layout of the magnets in the motor under consideration produces a trapezoidal back electromotive force (emf), which is more challenging for the estimators due to the introduction of higher order harmonics. The three estimation techniques are compared in terms of accuracy in estimating the true parameter value. The multiple model estimation (MME) algorithm utilizing Kalman filters provides the most accurate estimate with the least computational complexity while the additional complexity of the extended Kalman filter (EKF) and the fading memory extended Kalman filter (FM-EKF) results in a poor estimate of the parameter.\",\"PeriodicalId\":140916,\"journal\":{\"name\":\"Proceedings of the 7th International Conference of Control, Dynamic Systems, and Robotics (CDSR'20)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference of Control, Dynamic Systems, and Robotics (CDSR'20)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/cdsr20.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference of Control, Dynamic Systems, and Robotics (CDSR'20)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/cdsr20.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,考虑了三种自适应估计方法来识别内置式永磁电机的定子绕组电阻。考虑到电机中磁体的布局会产生一个梯形反电动势(emf),由于引入了高次谐波,这对估计器更具挑战性。比较了三种估计方法在估计真参数值方面的精度。利用卡尔曼滤波器的多模型估计(MME)算法以最小的计算复杂度提供了最准确的估计,而扩展卡尔曼滤波器(EKF)和衰落记忆扩展卡尔曼滤波器(FM-EKF)的额外复杂度导致参数估计较差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Three Stator Resistance Estimation Methods for a Permanent Magnet Motor
- In this work, three adaptive estimation methods are considered for the identification of the stator winding resistance of an interior permanent magnet motor. The layout of the magnets in the motor under consideration produces a trapezoidal back electromotive force (emf), which is more challenging for the estimators due to the introduction of higher order harmonics. The three estimation techniques are compared in terms of accuracy in estimating the true parameter value. The multiple model estimation (MME) algorithm utilizing Kalman filters provides the most accurate estimate with the least computational complexity while the additional complexity of the extended Kalman filter (EKF) and the fading memory extended Kalman filter (FM-EKF) results in a poor estimate of the parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信