二维深度神经网络及其在线快速学习

Yevgeniy V. Bodyanskiy, O. Boiko, I. Pliss, V. Volkova
{"title":"二维深度神经网络及其在线快速学习","authors":"Yevgeniy V. Bodyanskiy, O. Boiko, I. Pliss, V. Volkova","doi":"10.1109/IDAACS.2019.8924281","DOIUrl":null,"url":null,"abstract":"In the paper, the 2D-deep neural network and the algorithm for its online learning are proposed. This system allows reducing the number of adjustable weights due to the rejection of the vectorization-devectorization operations. As a result, it saves the information that is contained between columns and rows of data inputs presented as 2D matrix.","PeriodicalId":415006,"journal":{"name":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"2D-Deep Neural Network and Its Online Rapid Learning\",\"authors\":\"Yevgeniy V. Bodyanskiy, O. Boiko, I. Pliss, V. Volkova\",\"doi\":\"10.1109/IDAACS.2019.8924281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, the 2D-deep neural network and the algorithm for its online learning are proposed. This system allows reducing the number of adjustable weights due to the rejection of the vectorization-devectorization operations. As a result, it saves the information that is contained between columns and rows of data inputs presented as 2D matrix.\",\"PeriodicalId\":415006,\"journal\":{\"name\":\"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAACS.2019.8924281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2019.8924281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了二维深度神经网络及其在线学习算法。由于拒绝矢量化-去分散化操作,该系统可以减少可调节权重的数量。因此,它将数据输入的列和行之间包含的信息保存为2D矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D-Deep Neural Network and Its Online Rapid Learning
In the paper, the 2D-deep neural network and the algorithm for its online learning are proposed. This system allows reducing the number of adjustable weights due to the rejection of the vectorization-devectorization operations. As a result, it saves the information that is contained between columns and rows of data inputs presented as 2D matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信