均值和协方差的不可知论估计

Kevin A. Lai, Anup B. Rao, S. Vempala
{"title":"均值和协方差的不可知论估计","authors":"Kevin A. Lai, Anup B. Rao, S. Vempala","doi":"10.1109/FOCS.2016.76","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the mean and covariance of a distribution from i.i.d. samples in the presence of a fraction of malicious noise. This is in contrast to much recent work where the noise itself is assumed to be from a distribution of known type. The agnostic problem includes many interesting special cases, e.g., learning the parameters of a single Gaussian (or finding the best-fit Gaussian) when a fraction of data is adversarially corrupted, agnostically learning mixtures, agnostic ICA, etc. We present polynomial-time algorithms to estimate the mean and covariance with error guarantees in terms of information-theoretic lower bounds. As a corollary, we also obtain an agnostic algorithm for Singular Value Decomposition.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"309","resultStr":"{\"title\":\"Agnostic Estimation of Mean and Covariance\",\"authors\":\"Kevin A. Lai, Anup B. Rao, S. Vempala\",\"doi\":\"10.1109/FOCS.2016.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of estimating the mean and covariance of a distribution from i.i.d. samples in the presence of a fraction of malicious noise. This is in contrast to much recent work where the noise itself is assumed to be from a distribution of known type. The agnostic problem includes many interesting special cases, e.g., learning the parameters of a single Gaussian (or finding the best-fit Gaussian) when a fraction of data is adversarially corrupted, agnostically learning mixtures, agnostic ICA, etc. We present polynomial-time algorithms to estimate the mean and covariance with error guarantees in terms of information-theoretic lower bounds. As a corollary, we also obtain an agnostic algorithm for Singular Value Decomposition.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"309\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 309

摘要

我们考虑了在存在一小部分恶意噪声的情况下,从i.i.d样本估计分布的均值和协方差的问题。这与最近的许多研究相反,这些研究认为噪声本身来自已知类型的分布。不可知论问题包括许多有趣的特殊情况,例如,当一小部分数据被对抗性破坏时,学习单个高斯函数的参数(或找到最适合的高斯函数),不可知论学习混合,不可知论ICA等。我们提出了多项式时间算法估计均值和协方差与误差保证在信息论的下界。作为推论,我们也得到了奇异值分解的不可知算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Agnostic Estimation of Mean and Covariance
We consider the problem of estimating the mean and covariance of a distribution from i.i.d. samples in the presence of a fraction of malicious noise. This is in contrast to much recent work where the noise itself is assumed to be from a distribution of known type. The agnostic problem includes many interesting special cases, e.g., learning the parameters of a single Gaussian (or finding the best-fit Gaussian) when a fraction of data is adversarially corrupted, agnostically learning mixtures, agnostic ICA, etc. We present polynomial-time algorithms to estimate the mean and covariance with error guarantees in terms of information-theoretic lower bounds. As a corollary, we also obtain an agnostic algorithm for Singular Value Decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信