{"title":"nv树:十亿尺度上的近邻","authors":"Herwig Lejsek, B. Jónsson, L. Amsaleg","doi":"10.1145/1991996.1992050","DOIUrl":null,"url":null,"abstract":"This paper presents the NV-Tree (Nearest Vector Tree). It addresses the specific, yet important, problem of efficiently and effectively finding the approximate k-nearest neighbors within a collection of a few billion high-dimensional data points. The NV-Tree is a very compact index, as only six bytes are kept in the index for each high-dimensional descriptor. It thus scales extremely well when indexing large collections of high-dimensional descriptors. The NV-Tree efficiently produces results of good quality, even at such a large scale that the indices cannot be kept entirely in main memory any more. We demonstrate this with extensive experiments using a collection of 2.5 billion SIFT (Scale Invariant Feature Transform) descriptors.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"NV-Tree: nearest neighbors at the billion scale\",\"authors\":\"Herwig Lejsek, B. Jónsson, L. Amsaleg\",\"doi\":\"10.1145/1991996.1992050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the NV-Tree (Nearest Vector Tree). It addresses the specific, yet important, problem of efficiently and effectively finding the approximate k-nearest neighbors within a collection of a few billion high-dimensional data points. The NV-Tree is a very compact index, as only six bytes are kept in the index for each high-dimensional descriptor. It thus scales extremely well when indexing large collections of high-dimensional descriptors. The NV-Tree efficiently produces results of good quality, even at such a large scale that the indices cannot be kept entirely in main memory any more. We demonstrate this with extensive experiments using a collection of 2.5 billion SIFT (Scale Invariant Feature Transform) descriptors.\",\"PeriodicalId\":390933,\"journal\":{\"name\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1991996.1992050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents the NV-Tree (Nearest Vector Tree). It addresses the specific, yet important, problem of efficiently and effectively finding the approximate k-nearest neighbors within a collection of a few billion high-dimensional data points. The NV-Tree is a very compact index, as only six bytes are kept in the index for each high-dimensional descriptor. It thus scales extremely well when indexing large collections of high-dimensional descriptors. The NV-Tree efficiently produces results of good quality, even at such a large scale that the indices cannot be kept entirely in main memory any more. We demonstrate this with extensive experiments using a collection of 2.5 billion SIFT (Scale Invariant Feature Transform) descriptors.