基于局部统计边缘模型的多尺度图像分解

Kin-Ming Wong
{"title":"基于局部统计边缘模型的多尺度图像分解","authors":"Kin-Ming Wong","doi":"10.1109/ICVR51878.2021.9483837","DOIUrl":null,"url":null,"abstract":"We present a progressive image decomposition method based on a novel non-linear filter named Sub-window Variance filter. Our method is specifically designed for image detail enhancement purpose; this application requires extraction of image details which are small in terms of both spatial and variation scales. We propose a local statistical edge model which develops its edge awareness using spatially defined image statistics. Our decomposition method is controlled by two intuitive parameters which allow the users to define what image details to suppress or enhance. By using the summed-area table acceleration method, our decomposition pipeline is highly parallel. The proposed filter is gradient preserving and this allows our enhancement results free from the gradient-reversal artefact. In our evaluations, we compare our method in various multi-scale image detail manipulation applications with other mainstream solutions.","PeriodicalId":266506,"journal":{"name":"2021 IEEE 7th International Conference on Virtual Reality (ICVR)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-scale Image Decomposition Using a Local Statistical Edge Model\",\"authors\":\"Kin-Ming Wong\",\"doi\":\"10.1109/ICVR51878.2021.9483837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a progressive image decomposition method based on a novel non-linear filter named Sub-window Variance filter. Our method is specifically designed for image detail enhancement purpose; this application requires extraction of image details which are small in terms of both spatial and variation scales. We propose a local statistical edge model which develops its edge awareness using spatially defined image statistics. Our decomposition method is controlled by two intuitive parameters which allow the users to define what image details to suppress or enhance. By using the summed-area table acceleration method, our decomposition pipeline is highly parallel. The proposed filter is gradient preserving and this allows our enhancement results free from the gradient-reversal artefact. In our evaluations, we compare our method in various multi-scale image detail manipulation applications with other mainstream solutions.\",\"PeriodicalId\":266506,\"journal\":{\"name\":\"2021 IEEE 7th International Conference on Virtual Reality (ICVR)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 7th International Conference on Virtual Reality (ICVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVR51878.2021.9483837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Virtual Reality (ICVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVR51878.2021.9483837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于子窗口方差滤波器的渐进图像分解方法。我们的方法是专门为图像细节增强而设计的;该应用程序需要提取图像细节,这些细节在空间和变化尺度上都很小。我们提出了一种局部统计边缘模型,该模型利用空间定义的图像统计来发展边缘感知。我们的分解方法由两个直观的参数控制,这两个参数允许用户定义要抑制或增强的图像细节。通过使用面积求和表加速方法,我们的分解管道是高度并行的。所提出的滤波器是梯度保持的,这使得我们的增强结果不受梯度反转伪影的影响。在我们的评估中,我们将我们的方法与其他主流解决方案在各种多尺度图像细节处理应用中进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale Image Decomposition Using a Local Statistical Edge Model
We present a progressive image decomposition method based on a novel non-linear filter named Sub-window Variance filter. Our method is specifically designed for image detail enhancement purpose; this application requires extraction of image details which are small in terms of both spatial and variation scales. We propose a local statistical edge model which develops its edge awareness using spatially defined image statistics. Our decomposition method is controlled by two intuitive parameters which allow the users to define what image details to suppress or enhance. By using the summed-area table acceleration method, our decomposition pipeline is highly parallel. The proposed filter is gradient preserving and this allows our enhancement results free from the gradient-reversal artefact. In our evaluations, we compare our method in various multi-scale image detail manipulation applications with other mainstream solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信