一种基于深度学习的皮肤表面微观结构粗糙度分级方法用于特应性皮炎的评估

Tatsuki Ohta, Yuma Miyaji, Tetsushi Koide, Kenta Nakamoto, Y. Hayashida, Y. Aoyama
{"title":"一种基于深度学习的皮肤表面微观结构粗糙度分级方法用于特应性皮炎的评估","authors":"Tatsuki Ohta, Yuma Miyaji, Tetsushi Koide, Kenta Nakamoto, Y. Hayashida, Y. Aoyama","doi":"10.1109/ITC-CSCC58803.2023.10212652","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a skin surface microstructure roughness grading method using deep learning for the assessment of atopic dermatitis. Since symptoms of atopic dermatitis are related to roughness of the skin microstructure (skin fold and skin ridge), we propose a method to classify roughness grades using deep learning. The proposed method can quantitatively provide useful information to assist clinical doctor in diagnosis even with a small amount of training data by proposing a new data augmentation method that takes skin roughness into account. We developed new classifiers for 11 grades and 6 grades of skin roughness, and obtained 87.1% accuracy in the case of 6 grades classification, which is similar to a clinical doctor's judgment.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Roughness Grading Method for Skin Surface Microstructure Using Deep Learning for the Assessment of Atopic Dermatitis\",\"authors\":\"Tatsuki Ohta, Yuma Miyaji, Tetsushi Koide, Kenta Nakamoto, Y. Hayashida, Y. Aoyama\",\"doi\":\"10.1109/ITC-CSCC58803.2023.10212652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a skin surface microstructure roughness grading method using deep learning for the assessment of atopic dermatitis. Since symptoms of atopic dermatitis are related to roughness of the skin microstructure (skin fold and skin ridge), we propose a method to classify roughness grades using deep learning. The proposed method can quantitatively provide useful information to assist clinical doctor in diagnosis even with a small amount of training data by proposing a new data augmentation method that takes skin roughness into account. We developed new classifiers for 11 grades and 6 grades of skin roughness, and obtained 87.1% accuracy in the case of 6 grades classification, which is similar to a clinical doctor's judgment.\",\"PeriodicalId\":220939,\"journal\":{\"name\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC-CSCC58803.2023.10212652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种使用深度学习的皮肤表面微观结构粗糙度分级方法来评估特应性皮炎。由于特应性皮炎的症状与皮肤微观结构(皮肤褶皱和皮肤脊)的粗糙度有关,我们提出了一种使用深度学习对粗糙度等级进行分类的方法。该方法提出了一种考虑皮肤粗糙度的数据增强方法,即使在少量训练数据的情况下,也能定量地提供有用的信息,帮助临床医生进行诊断。我们针对11个等级和6个等级的皮肤粗糙度开发了新的分类器,在6个等级分类的情况下,准确率达到了87.1%,接近于临床医生的判断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Roughness Grading Method for Skin Surface Microstructure Using Deep Learning for the Assessment of Atopic Dermatitis
In this paper, we propose a skin surface microstructure roughness grading method using deep learning for the assessment of atopic dermatitis. Since symptoms of atopic dermatitis are related to roughness of the skin microstructure (skin fold and skin ridge), we propose a method to classify roughness grades using deep learning. The proposed method can quantitatively provide useful information to assist clinical doctor in diagnosis even with a small amount of training data by proposing a new data augmentation method that takes skin roughness into account. We developed new classifiers for 11 grades and 6 grades of skin roughness, and obtained 87.1% accuracy in the case of 6 grades classification, which is similar to a clinical doctor's judgment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信