基于小波变换和主成分分析的混合医学图像融合方法

Zeinab Z. El kareh, Essam E. El madbouly, G. Banby, F. Abdelsamie
{"title":"基于小波变换和主成分分析的混合医学图像融合方法","authors":"Zeinab Z. El kareh, Essam E. El madbouly, G. Banby, F. Abdelsamie","doi":"10.21608/mjeer.2018.63181","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid approach for medical image fusion based on the Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). The main idea of the approach is to select between two fusion methods; DWT and PCA based on the local variance estimated at each position in the fusion results. Simulation results on multi-modality images are presented in this paper. The two modalities adopted are Magnetic Resonance (MR) images and Computed Tomography (CT) images. Evaluation metrics such as entropy, edge intensity, contrast, and average gradient have been adopted for performance evaluation of the proposed method. The obtained results confirm that the proposed method is superior in performance to the DWT and PCA methods individually.","PeriodicalId":218019,"journal":{"name":"Menoufia Journal of Electronic Engineering Research","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A hybrid approach for Medical Image Fusion Based on Wavelet Transform and Principal Component Analysis\",\"authors\":\"Zeinab Z. El kareh, Essam E. El madbouly, G. Banby, F. Abdelsamie\",\"doi\":\"10.21608/mjeer.2018.63181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid approach for medical image fusion based on the Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). The main idea of the approach is to select between two fusion methods; DWT and PCA based on the local variance estimated at each position in the fusion results. Simulation results on multi-modality images are presented in this paper. The two modalities adopted are Magnetic Resonance (MR) images and Computed Tomography (CT) images. Evaluation metrics such as entropy, edge intensity, contrast, and average gradient have been adopted for performance evaluation of the proposed method. The obtained results confirm that the proposed method is superior in performance to the DWT and PCA methods individually.\",\"PeriodicalId\":218019,\"journal\":{\"name\":\"Menoufia Journal of Electronic Engineering Research\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Menoufia Journal of Electronic Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/mjeer.2018.63181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Menoufia Journal of Electronic Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/mjeer.2018.63181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于离散小波变换和主成分分析的医学图像融合方法。该方法的主要思想是在两种融合方法之间进行选择;DWT和PCA基于融合结果中每个位置估计的局部方差。本文给出了多模态图像的仿真结果。采用的两种方式是磁共振(MR)图像和计算机断层扫描(CT)图像。采用熵、边缘强度、对比度和平均梯度等评价指标对该方法进行了性能评价。实验结果表明,该方法优于小波变换和主成分分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid approach for Medical Image Fusion Based on Wavelet Transform and Principal Component Analysis
This paper presents a hybrid approach for medical image fusion based on the Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). The main idea of the approach is to select between two fusion methods; DWT and PCA based on the local variance estimated at each position in the fusion results. Simulation results on multi-modality images are presented in this paper. The two modalities adopted are Magnetic Resonance (MR) images and Computed Tomography (CT) images. Evaluation metrics such as entropy, edge intensity, contrast, and average gradient have been adopted for performance evaluation of the proposed method. The obtained results confirm that the proposed method is superior in performance to the DWT and PCA methods individually.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信