一个低复杂性的患者特异性阈值为基础的加速器为大发作障碍

Muhammad Rizwan Khan, Wala Saadeh, Muhammad Awais Bin Altaf
{"title":"一个低复杂性的患者特异性阈值为基础的加速器为大发作障碍","authors":"Muhammad Rizwan Khan, Wala Saadeh, Muhammad Awais Bin Altaf","doi":"10.1109/BIOCAS.2017.8325149","DOIUrl":null,"url":null,"abstract":"This paper presents a 2-channel electroencephalograph (EEG) based seizure detection accelerator suitable for long-term continuous monitoring of patients suffering from the Grand-mal seizure disorder. The implementation is based on the novel slope based detection (SBD) algorithm to achieve start and end of seizure detection. The proposed SBD algorithm is verified experimentally using a full FPGA implementation with patients' recordings from Physionet Children Hospital Boston (CHB)-MIT EEG database with real-time seizure, information display on the Android phone through a low-power Bluetooth link. The patient-specific detection with specific threshold results in sensitivity, specificity, system latency, and detection latency of 91.2%, 93.6%, 0.5s, and 29.25 s, respectively, using the CHB-MIT EEG database.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A low complexity patient-specific threshold based accelerator for the Grand-mal seizure disorder\",\"authors\":\"Muhammad Rizwan Khan, Wala Saadeh, Muhammad Awais Bin Altaf\",\"doi\":\"10.1109/BIOCAS.2017.8325149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 2-channel electroencephalograph (EEG) based seizure detection accelerator suitable for long-term continuous monitoring of patients suffering from the Grand-mal seizure disorder. The implementation is based on the novel slope based detection (SBD) algorithm to achieve start and end of seizure detection. The proposed SBD algorithm is verified experimentally using a full FPGA implementation with patients' recordings from Physionet Children Hospital Boston (CHB)-MIT EEG database with real-time seizure, information display on the Android phone through a low-power Bluetooth link. The patient-specific detection with specific threshold results in sensitivity, specificity, system latency, and detection latency of 91.2%, 93.6%, 0.5s, and 29.25 s, respectively, using the CHB-MIT EEG database.\",\"PeriodicalId\":361477,\"journal\":{\"name\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2017.8325149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于双通道脑电图(EEG)的癫痫发作检测加速器,适用于大发作障碍患者的长期连续监测。该实现是基于新的基于斜率的检测(SBD)算法来实现癫痫发作的开始和结束检测。利用波士顿Physionet儿童医院(CHB)-MIT脑电图数据库中患者的实时癫痫记录,通过低功耗蓝牙链路在Android手机上显示信息,通过完整的FPGA实现实验验证了所提出的SBD算法。采用CHB-MIT脑电图数据库进行患者特异性阈值检测,灵敏度91.2%,特异性93.6%,系统潜伏期0.5s,检测潜伏期29.25 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A low complexity patient-specific threshold based accelerator for the Grand-mal seizure disorder
This paper presents a 2-channel electroencephalograph (EEG) based seizure detection accelerator suitable for long-term continuous monitoring of patients suffering from the Grand-mal seizure disorder. The implementation is based on the novel slope based detection (SBD) algorithm to achieve start and end of seizure detection. The proposed SBD algorithm is verified experimentally using a full FPGA implementation with patients' recordings from Physionet Children Hospital Boston (CHB)-MIT EEG database with real-time seizure, information display on the Android phone through a low-power Bluetooth link. The patient-specific detection with specific threshold results in sensitivity, specificity, system latency, and detection latency of 91.2%, 93.6%, 0.5s, and 29.25 s, respectively, using the CHB-MIT EEG database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信