Tay-Jyi Lin, Chen-Zong Liao, You-Jia Hu, Wei-Cheng Hsu, Zheng-Xian Wu, Shao-Yu Wang, Chun-Ming Huang, Ying-Hui Lai, C. Yeh, Jinn-Shyan Wang
{"title":"一种用于脑卒中患者实时语音转换的40nm CMOS SoC","authors":"Tay-Jyi Lin, Chen-Zong Liao, You-Jia Hu, Wei-Cheng Hsu, Zheng-Xian Wu, Shao-Yu Wang, Chun-Ming Huang, Ying-Hui Lai, C. Yeh, Jinn-Shyan Wang","doi":"10.1109/ASP-DAC52403.2022.9712584","DOIUrl":null,"url":null,"abstract":"This paper presents the first dysarthric voice conversion SoC, which can translate stroke patients' voice into more intelligible and clearer speech in real time. The SoC is composed of a RISC-V MPU and a compact DNN engine with a single 16-bit multiply-accumulator, which improves 12x performance and > 100x energy efficiency, and has been implemented in 40nm CMOS. The silicon area is 0.68×0.79mm2, and the measured power is 18.4mW for converting 3-sec dysarthric voice within 0.5 sec (at 200MHz and 0.8V) and 4.8mW for conversion < 1 sec (at 100MHz and 0.6V).","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 40nm CMOS SoC for Real-Time Dysarthric Voice Conversion of Stroke Patients\",\"authors\":\"Tay-Jyi Lin, Chen-Zong Liao, You-Jia Hu, Wei-Cheng Hsu, Zheng-Xian Wu, Shao-Yu Wang, Chun-Ming Huang, Ying-Hui Lai, C. Yeh, Jinn-Shyan Wang\",\"doi\":\"10.1109/ASP-DAC52403.2022.9712584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the first dysarthric voice conversion SoC, which can translate stroke patients' voice into more intelligible and clearer speech in real time. The SoC is composed of a RISC-V MPU and a compact DNN engine with a single 16-bit multiply-accumulator, which improves 12x performance and > 100x energy efficiency, and has been implemented in 40nm CMOS. The silicon area is 0.68×0.79mm2, and the measured power is 18.4mW for converting 3-sec dysarthric voice within 0.5 sec (at 200MHz and 0.8V) and 4.8mW for conversion < 1 sec (at 100MHz and 0.6V).\",\"PeriodicalId\":239260,\"journal\":{\"name\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC52403.2022.9712584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC52403.2022.9712584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 40nm CMOS SoC for Real-Time Dysarthric Voice Conversion of Stroke Patients
This paper presents the first dysarthric voice conversion SoC, which can translate stroke patients' voice into more intelligible and clearer speech in real time. The SoC is composed of a RISC-V MPU and a compact DNN engine with a single 16-bit multiply-accumulator, which improves 12x performance and > 100x energy efficiency, and has been implemented in 40nm CMOS. The silicon area is 0.68×0.79mm2, and the measured power is 18.4mW for converting 3-sec dysarthric voice within 0.5 sec (at 200MHz and 0.8V) and 4.8mW for conversion < 1 sec (at 100MHz and 0.6V).