希尔伯特的第十题

Andrew J. Misner
{"title":"希尔伯特的第十题","authors":"Andrew J. Misner","doi":"10.1090/mbk/121/58","DOIUrl":null,"url":null,"abstract":"In the following paper, I will give a brief introduction to the theory of Diophantine sets as well as the theory of computability. I will then present the Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem, which is immediately comprehensible given just a cursory understanding of the mathematical basics, and give some details of its proof. Finally, I will present some further work in the area of Diophantine computability and various applications or corollaries of the celebrated MRDP theorem.","PeriodicalId":423691,"journal":{"name":"100 Years of Math Milestones","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hilbert’s tenth problem\",\"authors\":\"Andrew J. Misner\",\"doi\":\"10.1090/mbk/121/58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the following paper, I will give a brief introduction to the theory of Diophantine sets as well as the theory of computability. I will then present the Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem, which is immediately comprehensible given just a cursory understanding of the mathematical basics, and give some details of its proof. Finally, I will present some further work in the area of Diophantine computability and various applications or corollaries of the celebrated MRDP theorem.\",\"PeriodicalId\":423691,\"journal\":{\"name\":\"100 Years of Math Milestones\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"100 Years of Math Milestones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mbk/121/58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"100 Years of Math Milestones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mbk/121/58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在下面的文章中,我将简要介绍丢番图集理论和可计算性理论。然后,我将介绍Matiyasevich-Robinson-Davis-Putnam (MRDP)定理,只要对数学基础有粗略的了解,就可以立即理解它,并给出一些证明的细节。最后,我将介绍一些在丢芬图可计算性领域的进一步工作,以及著名的MRDP定理的各种应用或推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hilbert’s tenth problem
In the following paper, I will give a brief introduction to the theory of Diophantine sets as well as the theory of computability. I will then present the Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem, which is immediately comprehensible given just a cursory understanding of the mathematical basics, and give some details of its proof. Finally, I will present some further work in the area of Diophantine computability and various applications or corollaries of the celebrated MRDP theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信