{"title":"快速距离查询与矩形扫球体积","authors":"E. Larsen, S. Gottschalk, M. Lin, Dinesh Manocha","doi":"10.1109/ROBOT.2000.845311","DOIUrl":null,"url":null,"abstract":"We present new distance computation algorithms using hierarchies of rectangular swept spheres. Each bounding volume of the tree is described as the Minkowski sum of a rectangle and a sphere, and fits tightly to the underlying geometry. We present accurate and efficient algorithms to build the hierarchies and perform distance queries between the bounding volumes. We also present traversal techniques for accelerating distance queries using coherence and priority directed search. These algorithms have been used to perform proximity queries for applications including virtual prototyping, dynamic simulation, and motion planning on complex models. As compared to earlier algorithms based on bounding volume hierarchies for separation distance and approximate distance computation, our algorithms have achieved significant speedups on many benchmarks.","PeriodicalId":286422,"journal":{"name":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"298","resultStr":"{\"title\":\"Fast distance queries with rectangular swept sphere volumes\",\"authors\":\"E. Larsen, S. Gottschalk, M. Lin, Dinesh Manocha\",\"doi\":\"10.1109/ROBOT.2000.845311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new distance computation algorithms using hierarchies of rectangular swept spheres. Each bounding volume of the tree is described as the Minkowski sum of a rectangle and a sphere, and fits tightly to the underlying geometry. We present accurate and efficient algorithms to build the hierarchies and perform distance queries between the bounding volumes. We also present traversal techniques for accelerating distance queries using coherence and priority directed search. These algorithms have been used to perform proximity queries for applications including virtual prototyping, dynamic simulation, and motion planning on complex models. As compared to earlier algorithms based on bounding volume hierarchies for separation distance and approximate distance computation, our algorithms have achieved significant speedups on many benchmarks.\",\"PeriodicalId\":286422,\"journal\":{\"name\":\"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"298\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2000.845311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2000.845311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast distance queries with rectangular swept sphere volumes
We present new distance computation algorithms using hierarchies of rectangular swept spheres. Each bounding volume of the tree is described as the Minkowski sum of a rectangle and a sphere, and fits tightly to the underlying geometry. We present accurate and efficient algorithms to build the hierarchies and perform distance queries between the bounding volumes. We also present traversal techniques for accelerating distance queries using coherence and priority directed search. These algorithms have been used to perform proximity queries for applications including virtual prototyping, dynamic simulation, and motion planning on complex models. As compared to earlier algorithms based on bounding volume hierarchies for separation distance and approximate distance computation, our algorithms have achieved significant speedups on many benchmarks.