Roman D. Gall, Maya E. Shevchenko, Victor N. Malyshev
{"title":"中继卫星外差不稳定性对地面射电发射源定位的补偿","authors":"Roman D. Gall, Maya E. Shevchenko, Victor N. Malyshev","doi":"10.17212/1727-2769-2021-3-17-31","DOIUrl":null,"url":null,"abstract":"Unintentional and intentional interference of terrestrial radio sources operating via geostationary relay satellites to legal users of satellite communication systems requires accurate determination of their location. Methods of terrestrial radio sources location are based on the calculation of an cross-аambiguity function by additive mixtures of signals and noise received from relay satellites. In the presence of frequency-phase instability of relay satellites heterodynes the retransmitted signals have phase distortions, which lead to a decrease in the signal-to-noise ratio (SNR) when calculating the cross- ambiguity function. The paper is aimed to study the effect of phase distortions caused by the instability of relay satellites heterodynes on SNR at the correlator output and to develop methods for their compensation based on statistical radio engineering and digital signal processing. The study of the proposed compensation methods was carried out by statistical simulation modeling. The SNR dependences at the correlator output on the duration of correlated signals for the model with a domi-nant frequency noise and frequency random walk have been obtained and a method for compensat-ing phase distortions caused by the instability of the relay satellites heterodynes has been developed. The energy gain has been estimated by applying the proposed compensation method. It has been shown that the developed method of compensation of relay satellites heterodynes instability allows achieving a significant gain in the SNR at the correlator output and contributes to increasing the probability of radio source signal detection from auxiliary relay satellites.","PeriodicalId":448354,"journal":{"name":"Proceedings of the Russian higher school Academy of sciences","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compensation of relay satellites heterodyne instability for locating terrestrial radio emission sources\",\"authors\":\"Roman D. Gall, Maya E. Shevchenko, Victor N. Malyshev\",\"doi\":\"10.17212/1727-2769-2021-3-17-31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unintentional and intentional interference of terrestrial radio sources operating via geostationary relay satellites to legal users of satellite communication systems requires accurate determination of their location. Methods of terrestrial radio sources location are based on the calculation of an cross-аambiguity function by additive mixtures of signals and noise received from relay satellites. In the presence of frequency-phase instability of relay satellites heterodynes the retransmitted signals have phase distortions, which lead to a decrease in the signal-to-noise ratio (SNR) when calculating the cross- ambiguity function. The paper is aimed to study the effect of phase distortions caused by the instability of relay satellites heterodynes on SNR at the correlator output and to develop methods for their compensation based on statistical radio engineering and digital signal processing. The study of the proposed compensation methods was carried out by statistical simulation modeling. The SNR dependences at the correlator output on the duration of correlated signals for the model with a domi-nant frequency noise and frequency random walk have been obtained and a method for compensat-ing phase distortions caused by the instability of the relay satellites heterodynes has been developed. The energy gain has been estimated by applying the proposed compensation method. It has been shown that the developed method of compensation of relay satellites heterodynes instability allows achieving a significant gain in the SNR at the correlator output and contributes to increasing the probability of radio source signal detection from auxiliary relay satellites.\",\"PeriodicalId\":448354,\"journal\":{\"name\":\"Proceedings of the Russian higher school Academy of sciences\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Russian higher school Academy of sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17212/1727-2769-2021-3-17-31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Russian higher school Academy of sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/1727-2769-2021-3-17-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compensation of relay satellites heterodyne instability for locating terrestrial radio emission sources
Unintentional and intentional interference of terrestrial radio sources operating via geostationary relay satellites to legal users of satellite communication systems requires accurate determination of their location. Methods of terrestrial radio sources location are based on the calculation of an cross-аambiguity function by additive mixtures of signals and noise received from relay satellites. In the presence of frequency-phase instability of relay satellites heterodynes the retransmitted signals have phase distortions, which lead to a decrease in the signal-to-noise ratio (SNR) when calculating the cross- ambiguity function. The paper is aimed to study the effect of phase distortions caused by the instability of relay satellites heterodynes on SNR at the correlator output and to develop methods for their compensation based on statistical radio engineering and digital signal processing. The study of the proposed compensation methods was carried out by statistical simulation modeling. The SNR dependences at the correlator output on the duration of correlated signals for the model with a domi-nant frequency noise and frequency random walk have been obtained and a method for compensat-ing phase distortions caused by the instability of the relay satellites heterodynes has been developed. The energy gain has been estimated by applying the proposed compensation method. It has been shown that the developed method of compensation of relay satellites heterodynes instability allows achieving a significant gain in the SNR at the correlator output and contributes to increasing the probability of radio source signal detection from auxiliary relay satellites.