{"title":"以水和碳氢化合物为工质的分布式焚烧炉内热回收的数值估计","authors":"H. Yamashiro, T. Yara, Kenji Fukutomi","doi":"10.11648/J.IJMEA.20190701.12","DOIUrl":null,"url":null,"abstract":"The potential of a cogeneration system combined with a small combustion furnace was investigated in this study. The heat transfer between the exhaust gas and working fluid flowing in a spiral tube heat exchanger was estimated numerically and the amount of vapor generated was predicted. The combustion chamber had a 0.49 m3 inside volume with a chimney height of 2.5 m and an inner diameter of 0.28 m. A uniform gas side temperature condition that was referenced from the results of a preliminary experiment and a computational fluid dynamics simulation were adopted to simplify calculations and clarify the effects of working fluids. The amounts of heat recovery when utilizing water and other types of working fluids (Pentane, Butane) were compared. The most effective tube length considering pressure drop and phase change was also predicted. Isentropic theoretical thermal efficiency and T-s diagrams are analyzed to evaluate the vapor-power conversion rate using waste heat. As a result, a potential the heat recovery rate of approximately 100 kW at a 150 kg/h mass flow rate is expected.","PeriodicalId":398842,"journal":{"name":"International Journal of Mechanical Engineering and Applications","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Estimation of Heat Recovery within a Distributed Incinerator Using Water and Hydrocarbons as Working Fluids\",\"authors\":\"H. Yamashiro, T. Yara, Kenji Fukutomi\",\"doi\":\"10.11648/J.IJMEA.20190701.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential of a cogeneration system combined with a small combustion furnace was investigated in this study. The heat transfer between the exhaust gas and working fluid flowing in a spiral tube heat exchanger was estimated numerically and the amount of vapor generated was predicted. The combustion chamber had a 0.49 m3 inside volume with a chimney height of 2.5 m and an inner diameter of 0.28 m. A uniform gas side temperature condition that was referenced from the results of a preliminary experiment and a computational fluid dynamics simulation were adopted to simplify calculations and clarify the effects of working fluids. The amounts of heat recovery when utilizing water and other types of working fluids (Pentane, Butane) were compared. The most effective tube length considering pressure drop and phase change was also predicted. Isentropic theoretical thermal efficiency and T-s diagrams are analyzed to evaluate the vapor-power conversion rate using waste heat. As a result, a potential the heat recovery rate of approximately 100 kW at a 150 kg/h mass flow rate is expected.\",\"PeriodicalId\":398842,\"journal\":{\"name\":\"International Journal of Mechanical Engineering and Applications\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Engineering and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJMEA.20190701.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMEA.20190701.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Estimation of Heat Recovery within a Distributed Incinerator Using Water and Hydrocarbons as Working Fluids
The potential of a cogeneration system combined with a small combustion furnace was investigated in this study. The heat transfer between the exhaust gas and working fluid flowing in a spiral tube heat exchanger was estimated numerically and the amount of vapor generated was predicted. The combustion chamber had a 0.49 m3 inside volume with a chimney height of 2.5 m and an inner diameter of 0.28 m. A uniform gas side temperature condition that was referenced from the results of a preliminary experiment and a computational fluid dynamics simulation were adopted to simplify calculations and clarify the effects of working fluids. The amounts of heat recovery when utilizing water and other types of working fluids (Pentane, Butane) were compared. The most effective tube length considering pressure drop and phase change was also predicted. Isentropic theoretical thermal efficiency and T-s diagrams are analyzed to evaluate the vapor-power conversion rate using waste heat. As a result, a potential the heat recovery rate of approximately 100 kW at a 150 kg/h mass flow rate is expected.